Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 9 papers out of 9 papers

Mobile Health Apps for Medical Emergencies: Systematic Review.

  • Alejandro Plaza Roncero‎ et al.
  • JMIR mHealth and uHealth‎
  • 2020‎

Mobile health apps are used to improve the quality of health care. These apps are changing the current scenario in health care, and their numbers are increasing.


Transfer Learning for Alzheimer's Disease through Neuroimaging Biomarkers: A Systematic Review.

  • Deevyankar Agarwal‎ et al.
  • Sensors (Basel, Switzerland)‎
  • 2021‎

Alzheimer's disease (AD) is a remarkable challenge for healthcare in the 21st century. Since 2017, deep learning models with transfer learning approaches have been gaining recognition in AD detection, and progression prediction by using neuroimaging biomarkers. This paper presents a systematic review of the current state of early AD detection by using deep learning models with transfer learning and neuroimaging biomarkers. Five databases were used and the results before screening report 215 studies published between 2010 and 2020. After screening, 13 studies met the inclusion criteria. We noted that the maximum accuracy achieved to date for AD classification is 98.20% by using the combination of 3D convolutional networks and local transfer learning, and that for the prognostic prediction of AD is 87.78% by using pre-trained 3D convolutional network-based architectures. The results show that transfer learning helps researchers in developing a more accurate system for the early diagnosis of AD. However, there is a need to consider some points in future research, such as improving the accuracy of the prognostic prediction of AD, exploring additional biomarkers such as tau-PET and amyloid-PET to understand highly discriminative feature representation to separate similar brain patterns, managing the size of the datasets due to the limited availability.


Novel scFv against Notch Ligand JAG1 Suitable for Development of Cell Therapies toward JAG1-Positive Tumors.

  • Gabriela Silva‎ et al.
  • Biomolecules‎
  • 2023‎

The Notch signaling ligand JAG1 is overexpressed in various aggressive tumors and is associated with poor clinical prognosis. Hence, therapies targeting oncogenic JAG1 hold great potential for the treatment of certain tumors. Here, we report the identification of specific anti-JAG1 single-chain variable fragments (scFvs), one of them endowing chimeric antigen receptor (CAR) T cells with cytotoxicity against JAG1-positive cells. Anti-JAG1 scFvs were identified from human phage display libraries, reformatted into full-length monoclonal antibodies (Abs), and produced in mammalian cells. The characterization of these Abs identified two specific anti-JAG1 Abs (J1.B5 and J1.F1) with nanomolar affinities. Cloning the respective scFv sequences in our second- and third-generation CAR backbones resulted in six anti-JAG1 CAR constructs, which were screened for JAG1-mediated T-cell activation in Jurkat T cells in coculture assays with JAG1-positive cell lines. Studies in primary T cells demonstrated that one CAR harboring the J1.B5 scFv significantly induced effective T-cell activation in the presence of JAG1-positive, but not in JAG1-knockout, cancer cells, and enabled specific killing of JAG1-positive cells. Thus, this new anti-JAG1 scFv represents a promising candidate for the development of cell therapies against JAG1-positive tumors.


Internet of Things and Enhanced Living Environments: Measuring and Mapping Air Quality Using Cyber-physical Systems and Mobile Computing Technologies.

  • Gonçalo Marques‎ et al.
  • Sensors (Basel, Switzerland)‎
  • 2020‎

This paper presents a real-time air quality monitoring system based on Internet of Things. Air quality is particularly relevant for enhanced living environments and well-being. The Environmental Protection Agency and the World Health Organization have acknowledged the material impact of air quality on public health and defined standards and policies to regulate and improve air quality. However, there is a significant need for cost-effective methods to monitor and control air quality which provide modularity, scalability, portability, easy installation and configuration features, and mobile computing technologies integration. The proposed method allows the measuring and mapping of air quality levels considering the spatial-temporal information. This system incorporates a cyber-physical system for data collection and mobile computing software for data consulting. Moreover, this method provides a cost-effective and efficient solution for air quality supervision and can be installed in vehicles to monitor air quality while travelling. The results obtained confirm the implementation of the system and present a relevant contribution to enhanced living environments in smart cities. This supervision solution provides real-time identification of unhealthy behaviours and supports the planning of possible interventions to increase air quality.


Identification of Serious Adverse Events in Patients with Traumatic Brain Injuries, from Prehospital Care to Intensive-Care Unit, Using Early Warning Scores.

  • Francisco Martín-Rodríguez‎ et al.
  • International journal of environmental research and public health‎
  • 2020‎

Traumatic brain injuries are complex situations in which the emergency medical services must quickly determine the risk of deterioration using minimal diagnostic methods. The aim of this study is to analyze whether the use of early warning scores can help with decision-making in these dynamic situations by determining the patients who need the intensive care unit. A prospective, multicentric cohort study without intervention was carried out on traumatic brain injury patients aged over 18 given advanced life support and taken to the hospital. Our study included a total of 209 cases. The total number of intensive-care unit admissions was 50 cases (23.9%). Of the scores analyzed, the National Early Warning Score2 was the best result presented with an area under the curve of 0.888 (0.81-0.94; p < 0.001) and an odds ratio of 25.4 (95% confidence interval (CI):11.2-57.5). The use of early warning scores (and specifically National Early Warning Score2) can help the emergency medical services to differentiate traumatic brain injury patients with a high risk of deterioration. The emergency medical services should use the early warning scores routinely in all cases for the early detection of high-risk situations.


Suicide Risk Assessment Using Machine Learning and Social Networks: a Scoping Review.

  • Gema Castillo-Sánchez‎ et al.
  • Journal of medical systems‎
  • 2020‎

According to the World Health Organization (WHO) report in 2016, around 800,000 of individuals have committed suicide. Moreover, suicide is the second cause of unnatural death in people between 15 and 29 years. This paper reviews state of the art on the literature concerning the use of machine learning methods for suicide detection on social networks. Consequently, the objectives, data collection techniques, development process and the validation metrics used for suicide detection on social networks are analyzed. The authors conducted a scoping review using the methodology proposed by Arksey and O'Malley et al. and the PRISMA protocol was adopted to select the relevant studies. This scoping review aims to identify the machine learning techniques used to predict suicide risk based on information posted on social networks. The databases used are PubMed, Science Direct, IEEE Xplore and Web of Science. In total, 50% of the included studies (8/16) report explicitly the use of data mining techniques for feature extraction, feature detection or entity identification. The most commonly reported method was the Linguistic Inquiry and Word Count (4/8, 50%), followed by Latent Dirichlet Analysis, Latent Semantic Analysis, and Word2vec (2/8, 25%). Non-negative Matrix Factorization and Principal Component Analysis were used only in one of the included studies (12.5%). In total, 3 out of 8 research papers (37.5%) combined more than one of those techniques. Supported Vector Machine was implemented in 10 out of the 16 included studies (62.5%). Finally, 75% of the analyzed studies implement machine learning-based models using Python.


Machine Learning in Medical Emergencies: a Systematic Review and Analysis.

  • Inés Robles Mendo‎ et al.
  • Journal of medical systems‎
  • 2021‎

Despite the increasing demand for artificial intelligence research in medicine, the functionalities of his methods in health emergency remain unclear. Therefore, the authors have conducted this systematic review and a global overview study which aims to identify, analyse, and evaluate the research available on different platforms, and its implementations in healthcare emergencies. The methodology applied for the identification and selection of the scientific studies and the different applications consist of two methods. On the one hand, the PRISMA methodology was carried out in Google Scholar, IEEE Xplore, PubMed ScienceDirect, and Scopus. On the other hand, a review of commercial applications found in the best-known commercial platforms (Android and iOS). A total of 20 studies were included in this review. Most of the included studies were of clinical decisions (n = 4, 20%) or medical services or emergency services (n = 4, 20%). Only 2 were focused on m-health (n = 2, 10%). On the other hand, 12 apps were chosen for full testing on different devices. These apps dealt with pre-hospital medical care (n = 3, 25%) or clinical decision support (n = 3, 25%). In total, half of these apps are based on machine learning based on natural language processing. Machine learning is increasingly applicable to healthcare and offers solutions to improve the efficiency and quality of healthcare. With the emergence of mobile health devices and applications that can use data and assess a patient's real-time health, machine learning is a growing trend in the healthcare industry.


Indoor Air Quality Monitoring Systems Based on Internet of Things: A Systematic Review.

  • Jagriti Saini‎ et al.
  • International journal of environmental research and public health‎
  • 2020‎

Indoor air quality has been a matter of concern for the international scientific community. Public health experts, environmental governances, and industry experts are working to improve the overall health, comfort, and well-being of building occupants. Repeated exposure to pollutants in indoor environments is reported as one of the potential causes of several chronic health problems such as lung cancer, cardiovascular disease, and respiratory infections. Moreover, smart cities projects are promoting the use of real-time monitoring systems to detect unfavorable scenarios for enhanced living environments. The main objective of this work is to present a systematic review of the current state of the art on indoor air quality monitoring systems based on the Internet of Things. The document highlights design aspects for monitoring systems, including sensor types, microcontrollers, architecture, and connectivity along with implementation issues of the studies published in the previous five years (2015-2020). The main contribution of this paper is to present the synthesis of existing research, knowledge gaps, associated challenges, and future recommendations. The results show that 70%, 65%, and 27.5% of studies focused on monitoring thermal comfort parameters, CO2, and PM levels, respectively. Additionally, there are 37.5% and 35% of systems based on Arduino and Raspberry Pi controllers. Only 22.5% of studies followed the calibration approach before system implementation, and 72.5% of systems claim energy efficiency.


Genetic regulation of body size and morphology in children: a twin study of 22 anthropometric traits.

  • Karri Silventoinen‎ et al.
  • International journal of obesity (2005)‎
  • 2023‎

Anthropometric measures show high heritability, and genetic correlations have been found between obesity-related traits. However, we lack a comprehensive analysis of the genetic background of human body morphology using detailed anthropometric measures.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: