Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

River network rearrangements promote speciation in lowland Amazonian birds.

  • Lukas J Musher‎ et al.
  • Science advances‎
  • 2022‎

Large Amazonian rivers impede dispersal for many species, but lowland river networks frequently rearrange, thereby altering the location and effectiveness of river barriers through time. These rearrangements may promote biotic diversification by facilitating episodic allopatry and secondary contact among populations. We sequenced genome-wide markers to evaluate the histories of divergence and introgression in six Amazonian avian species complexes. We first tested the assumption that rivers are barriers for these taxa and found that even relatively small rivers facilitate divergence. We then tested whether species diverged with gene flow and recovered reticulate histories for all species, including one potential case of hybrid speciation. Our results support the hypothesis that river rearrangements promote speciation and reveal that many rainforest taxa are micro-endemic, unrecognized, and thus threatened with imminent extinction. We propose that Amazonian hyper-diversity originates partly from fine-scale barrier displacement processes-including river dynamics-which allow small populations to differentiate and disperse into secondary contact.


Marshes as "Mountain Tops": Genetic Analyses of the Critically Endangered São Paulo Marsh Antwren (Aves: Thamnophilidae).

  • Crisley de Camargo‎ et al.
  • PloS one‎
  • 2015‎

Small populations of endangered species can be impacted by genetic processes such as drift and inbreeding that reduce population viability. As such, conservation genetic analyses that assess population levels of genetic variation and levels of gene flow can provide important information for managing threatened species. The São Paulo Marsh Antwren (Formicivora paludicola) is a recently-described and critically endangered bird from São Paulo State (Brazil) whose total estimated population is around 250-300 individuals, distributed in only 15 isolated marshes around São Paulo metropolitan region. We used microsatellite DNA markers to estimate the population genetic characteristics of the three largest remaining populations of this species all within 60 km of each other. We detected a high and significant genetic structure between all populations (overall FST = 0.103) which is comparable to the highest levels of differentiation ever documented for birds, (e.g., endangered birds found in isolated populations on the tops of African mountains), but also evidence for first-generation immigrants, likely from small local unsampled populations. Effective population sizes were small (between 28.8-99.9 individuals) yet there are high levels of genetic variability within populations and no evidence for inbreeding. Conservation implications of this work are that the high levels of genetic structure suggests that translocations between populations need to be carefully considered in light of possible local adaptation and that remaining populations of these birds should be managed as conservation units that contain both main populations studied here but also small outlying populations which may be a source of immigrants.


A multiscale approach indicates a severe reduction in Atlantic Forest wetlands and highlights that São Paulo Marsh Antwren is on the brink of extinction.

  • Glaucia Del-Rio‎ et al.
  • PloS one‎
  • 2015‎

Over the last 200 years the wetlands of the Upper Tietê and Upper Paraíba do Sul basins, in the southeastern Atlantic Forest, Brazil, have been almost-completely transformed by urbanization, agriculture and mining. Endemic to these river basins, the São Paulo Marsh Antwren (Formicivora paludicola) survived these impacts, but remained unknown to science until its discovery in 2005. Its population status was cause for immediate concern. In order to understand the factors imperiling the species, and provide guidelines for its conservation, we investigated both the species' distribution and the distribution of areas of suitable habitat using a multiscale approach encompassing species distribution modeling, fieldwork surveys and occupancy models. Of six species distribution models methods used (Generalized Linear Models, Generalized Additive Models, Multivariate Adaptive Regression Splines, Classification Tree Analysis, Artificial Neural Networks and Random Forest), Random Forest showed the best fit and was utilized to guide field validation. After surveying 59 sites, our results indicated that Formicivora paludicola occurred in only 13 sites, having narrow habitat specificity, and restricted habitat availability. Additionally, historic maps, distribution models and satellite imagery showed that human occupation has resulted in a loss of more than 346 km2 of suitable habitat for this species since the early twentieth century, so that it now only occupies a severely fragmented area (area of occupancy) of 1.42 km2, and it should be considered Critically Endangered according to IUCN criteria. Furthermore, averaged occupancy models showed that marshes with lower cattail (Typha dominguensis) densities have higher probabilities of being occupied. Thus, these areas should be prioritized in future conservation efforts to protect the species, and to restore a portion of Atlantic Forest wetlands, in times of unprecedented regional water supply problems.


Dense sampling of bird diversity increases power of comparative genomics.

  • Shaohong Feng‎ et al.
  • Nature‎
  • 2020‎

Whole-genome sequencing projects are increasingly populating the tree of life and characterizing biodiversity1-4. Sparse taxon sampling has previously been proposed to confound phylogenetic inference5, and captures only a fraction of the genomic diversity. Here we report a substantial step towards the dense representation of avian phylogenetic and molecular diversity, by analysing 363 genomes from 92.4% of bird families-including 267 newly sequenced genomes produced for phase II of the Bird 10,000 Genomes (B10K) Project. We use this comparative genome dataset in combination with a pipeline that leverages a reference-free whole-genome alignment to identify orthologous regions in greater numbers than has previously been possible and to recognize genomic novelties in particular bird lineages. The densely sampled alignment provides a single-base-pair map of selection, has more than doubled the fraction of bases that are confidently predicted to be under conservation and reveals extensive patterns of weak selection in predominantly non-coding DNA. Our results demonstrate that increasing the diversity of genomes used in comparative studies can reveal more shared and lineage-specific variation, and improve the investigation of genomic characteristics. We anticipate that this genomic resource will offer new perspectives on evolutionary processes in cross-species comparative analyses and assist in efforts to conserve species.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: