Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Mapping of the Human Amniotic Membrane: In Situ Detection of Microvesicles Secreted by Amniotic Epithelial Cells.

  • Mariangela Basile‎ et al.
  • Cell transplantation‎
  • 2023‎

The potential clinical applications of human amniotic membrane (hAM) and human amniotic epithelial cells (hAECs) in the field of regenerative medicine have been known in literature since long. However, it has yet to be elucidated whether hAM contains different anatomical regions with different plasticity and differentiation potential. Recently, for the first time, we highlighted many differences in terms of morphology, marker expression, and differentiation capabilities among four distinct anatomical regions of hAM, demonstrating peculiar functional features in hAEC populations. The aim of this study was to investigate in situ the ultrastructure of the four different regions of hAM by means of transmission electron microscopy (TEM) to deeply understand their peculiar characteristics and to investigate the presence and localization of secretory products because to our knowledge, there are no similar studies in the literature. The results of this study confirm our previous observations of hAM heterogeneity and highlight for the first time that hAM can produce extracellular vesicles (EVs) in a heterogeneous manner. These findings should be considered to increase efficiency of hAM applications within a therapeutic context.


Human amniotic fluid stem cells are able to form embryoid body-like aggregates which performs specific functions: morphological evidences.

  • Lucia Centurione‎ et al.
  • Histochemistry and cell biology‎
  • 2021‎

Human second trimester Amniotic Fluid Stem Cells (hAFSCs) harbour the potential to differentiate into cells of each of the three germ layers and to form Embryoid Body (EB)-like aggregates, without inducing teratoma formation and with no ethical concerns. However, in spite of the number of reports on hAFSCs-EBs and their characterization, a thorough evaluation in light and electron microscopy of morphological and morphometric features of hAFSCs-EBs development in vitro has not been reported yet. Apart from a superficial layer of epithelial-like flat cells, displaying rare microvilli on the free surface, hAFSCs-EBs enclose inner material, abundant in vesicles and secretory granules, showing early characteristics of connective extracellular matrix dispersed among different types of inner cells. The observation of a number of microvesicles mainly represented by microparticles and, to a lower extent, by exosomes indicates the presence of a complex cellular communication system within this structure. According to morphological analysis, after 7 days of in vitro culture hAFSCs-EB appears as a well-organized corpuscle, sufficiently young to be a carrier of stemness and at the same time, when appropriately stimulated, able to differentiate. In fact, 7-day hAFSCs-EB represents itself an initial cellular transformation towards a specialized structure both in recording and in providing different stimuli from the surrounding environment, organizing structures and cells towards a differentiation fate.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: