Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 39 papers

Brain response to a humanoid robot in areas implicated in the perception of human emotional gestures.

  • Thierry Chaminade‎ et al.
  • PloS one‎
  • 2010‎

The humanoid robot WE4-RII was designed to express human emotions in order to improve human-robot interaction. We can read the emotions depicted in its gestures, yet might utilize different neural processes than those used for reading the emotions in human agents.


Effects of emotional contexts on cerebello-thalamo-cortical activity during action observation.

  • Viridiana Mazzola‎ et al.
  • PloS one‎
  • 2013‎

Several studies investigated the neural and functional mechanisms underlying action observation in contexts with objects. However, actions seen in everyday life are often embedded in emotional contexts. The neural systems integrating emotion cues in action observation are still poorly understood. Previous findings suggest that the processing of both action and emotion information recruits motor control areas within the cerebello-thalamo-cortical pathways. It is therefore hard to determine whether social emotional contexts influence action processing via a direct modulation of motor representations coding for the observed action or via the affective state and implicit motor preparedness elicited in observers in response to emotional contexts. Here we designed a novel fMRI task to identify neural networks engaged by the affective appraisal of a grasping action seen in two different emotional contexts, while keeping the action kinematics constant. Results confirmed that observing the same acts of grasping but in different emotional contexts modulated activity in supplementary motor area, ventrolateral thalamus, anterior cerebellum. Moreover, changes in functional connectivity between left supplementary motor area and parahippocampus in different emotional contexts suggested a direct neural pathway through which emotional contexts may drive the neural motor system. Taken together, these findings shed new light on the malleability of motor system as a function of emotional contexts.


Binding action and emotion in social understanding.

  • Francesca Ferri‎ et al.
  • PloS one‎
  • 2013‎

In social life actions are tightly linked with emotions. The integration of affective- and action-related information has to be considered as a fundamental component of appropriate social understanding. The present functional magnetic resonance imaging study aimed at investigating whether an emotion (Happiness, Anger or Neutral) dynamically expressed by an observed agent modulates brain activity underlying the perception of his grasping action. As control stimuli, participants observed the same agent either only expressing an emotion or only performing a grasping action. Our results showed that the observation of an action embedded in an emotional context (agent's facial expression), compared with the observation of the same action embedded in a neutral context, elicits higher neural response at the level of motor frontal cortices, temporal and occipital cortices, bilaterally. Particularly, the dynamic facial expression of anger modulates the re-enactment of a motor representation of the observed action. This is supported by the evidence that observing actions embedded in the context of anger, but not happiness, compared with a neutral context, elicits stronger activity in the bilateral pre-central gyrus and inferior frontal gyrus, besides the pre-supplementary motor area, a region playing a central role in motor control. Angry faces not only seem to modulate the simulation of actions, but may also trigger motor reaction. These findings suggest that emotions exert a modulatory role on action observation in different cortical areas involved in action processing.


Understanding motor acts and motor intentions in Williams syndrome.

  • Laura Sparaci‎ et al.
  • Neuropsychologia‎
  • 2012‎

Williams syndrome (WS) is a rare genetic disorder associated with unusually hyper-social demeanor and ease with strangers. These personality traits are accompanied by difficulties in social interactions, possibly related, at least in part, to a difficulty in understanding others' mental states. Studies on mentalizing capacities in individuals with WS have often led to contrasting results, some studies revealing specific impairments, others highlighting spared mentalizing capacities. So far, however, no study investigated the performance of individuals with WS in non-inferential understanding of others' motor intentions. In the present study we investigated this capacity by using a computer-based behavioral task using pictures of hand-object interactions. We asked individuals with WS first to describe what the other was doing (i.e. a task implying no kind of intention reading), and secondly, if successful in answering the first question, to describe the motor intention underlying the observed motor acts (i.e. why an act was being done, a task requiring non-inferential motor intention understanding). Results showed that individuals with WS made more errors in understanding what the other was doing (i.e. understanding a motor act) compared to both mental-age matched controls and chronological-age matched peers with typical development, while showing mental-age appropriate performance in understanding why an individual was acting (i.e. understanding a motor intention). These findings suggest novel perspectives for understanding impairments in social behavior in WS.


Processing of hand-related verbs specifically affects the planning and execution of arm reaching movements.

  • Giovanni Mirabella‎ et al.
  • PloS one‎
  • 2012‎

Even though a growing body of research has shown that the processing of action language affects the planning and execution of motor acts, several aspects of this interaction are still hotly debated. The directionality (i.e. does understanding action-related language induce a facilitation or an interference with the corresponding action?), the time course, and the nature of the interaction (i.e. under what conditions does the phenomenon occur?) are largely unclear. To further explore this topic we exploited a go/no-go paradigm in which healthy participants were required to perform arm reaching movements toward a target when verbs expressing either hand or foot actions were shown, and to refrain from moving when abstract verbs were presented. We found that reaction times (RT) and percentages of errors increased when the verb involved the same effector used to give the response. This interference occurred very early, when the interval between verb presentation and the delivery of the go signal was 50 ms, and could be elicited until this delay was about 600 ms. In addition, RTs were faster when subjects used the right arm than when they used the left arm, suggesting that action-verb understanding is left-lateralized. Furthermore, when the color of the printed verb and not its meaning was the cue for movement execution the differences between RTs and error percentages between verb categories disappeared, unequivocally indicating that the phenomenon occurs only when the semantic content of a verb has to be retrieved. These results are compatible with the theory of embodied language, which hypothesizes that comprehending verbal descriptions of actions relies on an internal simulation of the sensory-motor experience of the action, and provide a new and detailed view of the interplay between action language and motor acts.


Audience spontaneous entrainment during the collective enjoyment of live performances: physiological and behavioral measurements.

  • Martina Ardizzi‎ et al.
  • Scientific reports‎
  • 2020‎

Cardiac synchrony is a crucial component of shared experiences, considered as an objective measure of emotional processes accompanying empathic interactions. No study has investigated whether cardiac synchrony among people engaged in collective situations links to the individual emotional evaluation of the shared experience. We investigated theatrical live performances as collective experiences evoking strong emotional engagement in the audience. Cross Recurrence Quantification Analysis was applied to obtain the cardiac synchrony of twelve spectators' quartets attending to two live acting performances. This physiological measure was then correlated with spectators' emotional intensity ratings. Results showed an expected increment in synchrony among people belonging to the same quartet during both performances attendance and rest periods. Furthermore, participants' cardiac synchrony was found to be correlated with audience's convergence in the explicit emotional evaluation of the performances they attended to. These findings demonstrate that the mere co-presence of other people sharing a common experience is enough for cardiac synchrony to occur spontaneously and that it increases in function of a shared and coherent explicit emotional experience.


Pain Mirrors: Neural Correlates of Observing Self or Others' Facial Expressions of Pain.

  • Francesca Benuzzi‎ et al.
  • Frontiers in psychology‎
  • 2018‎

Facial expressions of pain are able to elicit empathy and adaptive behavioral responses in the observer. An influential theory posits that empathy relies on an affective mirror mechanism, according to which emotion recognition relies upon the internal simulation of motor and interoceptive states triggered by emotional stimuli. We tested this hypothesis comparing representations of self or others' expressions of pain in nineteen young healthy female volunteers by means of functional magnetic resonance imaging (fMRI). We hypothesized that one's own facial expressions are more likely to elicit the internal simulation of emotions, being more strictly related to self. Video-clips of the facial expressions of each volunteer receiving either painful or non-painful mechanical stimulations to their right hand dorsum were recorded and used as stimuli in a 2 × 2 (Self/Other; Pain/No-Pain) within-subject design. During each trial, a 2 s video clip was presented, displaying either the subject's own neutral or painful facial expressions (Self No-Pain, SNP; Self Pain, SP), or the expressions of other unfamiliar volunteers (Others' No-Pain, ONP; Others' Pain, OP), displaying a comparable emotional intensity. Participants were asked to indicate whether each video displayed a pain expression. fMRI signals were higher while viewing Pain than No-Pain stimuli in a large bilateral array of cortical areas including middle and superior temporal, supramarginal, superior mesial and inferior frontal (IFG) gyri, anterior insula (AI), anterior cingulate (ACC), and anterior mid-cingulate (aMCC) cortex, as well as right fusiform gyrus. Bilateral activations were also detected in thalamus and basal ganglia. The Self vs. Other contrast showed signal changes in ACC and aMCC, IFG, AI, and parietal cortex. A significant interaction between Self and Pain [(SP vs. SNP) >(OP vs. ONP)] was found in a pre-defined region of aMCC known to be also active during noxious stimulation. These findings demonstrate that the observation of one's own and others' facial expressions share a largely common neural network, but self-related stimuli induce generally higher activations. In line with our hypothesis, selectively greater activity for self pain-related stimuli was found in aMCC, a medial-wall region critical for pain perception and recognition.


Embodying the camera: An EEG study on the effect of camera movements on film spectators´ sensorimotor cortex activation.

  • Katrin Heimann‎ et al.
  • PloS one‎
  • 2019‎

One key feature of film consists in its power to bodily engage the viewer. Previous research has suggested lens and camera movements to be among the most effective stylistic devices involved in such engagement. In an EEG experiment we assessed the role of such movements in modulating specific spectators´ neural and experiential responses, likely reflecting such engagement. We produced short video clips of an empty room with a still, a zooming and a moving camera (steadicam) that might simulate the movement of an observer in different ways. We found an event related desynchronization of the beta components of the rolandic mu rhythm that was stronger for the clips produced with steadicam than for those produced with a still or zooming camera. No equivalent modulation in the attention related occipital areas was found, thus confirming the sensorimotor nature of spectators´ neural responses to the film clips. The present study provides the first empirical evidence that filmic means such as camera movements alone can modulate spectators' bodily engagement with film.


ERP modulation during observation of abstract paintings by Franz Kline.

  • Beatrice Sbriscia-Fioretti‎ et al.
  • PloS one‎
  • 2013‎

The aim of this study was to test the involvement of sensorimotor cortical circuits during the beholding of the static consequences of hand gestures devoid of any meaning.In order to verify this hypothesis we performed an EEG experiment presenting to participants images of abstract works of art with marked traces of brushstrokes. The EEG data were analyzed by using Event Related Potentials (ERPs). We aimed to demonstrate a direct involvement of sensorimotor cortical circuits during the beholding of these selected works of abstract art. The stimuli consisted of three different abstract black and white paintings by Franz Kline. Results verified our experimental hypothesis showing the activation of premotor and motor cortical areas during stimuli observation. In addition, abstract works of art observation elicited the activation of reward-related orbitofrontal areas, and cognitive categorization-related prefrontal areas. The cortical sensorimotor activation is a fundamental neurophysiological demonstration of the direct involvement of the cortical motor system in perception of static meaningless images belonging to abstract art. These results support the role of embodied simulation of artist's gestures in the perception of works of art.


Specificity of esthetic experience for artworks: an FMRI study.

  • Cinzia Di Dio‎ et al.
  • Frontiers in human neuroscience‎
  • 2011‎

In a previous functional magnetic resonance imaging (fMRI) study, where we investigated the neural correlates of esthetic experience, we found that observing canonical sculptures, relative to sculptures whose proportions had been modified, produced the activation of a network that included the lateral occipital gyrus, precuneus, prefrontal areas, and, most interestingly, the right anterior insula. We interpreted this latter activation as the neural signature underpinning hedonic response during esthetic experience. With the aim of exploring whether this specific hedonic response is also present during the observation of non-art biological stimuli, in the present fMRI study we compared the activations associated with viewing masterpieces of classical sculpture with those produced by the observation of pictures of young athletes. The two stimulus-categories were matched on various factors, including body postures, proportion, and expressed dynamism. The stimuli were presented in two conditions: observation and esthetic judgment. The two stimulus-categories produced a rather similar global activation pattern. Direct comparisons between sculpture and real-body images revealed, however, relevant differences, among which the activation of right antero-dorsal insula during sculptures viewing only. Along with our previous data, this finding suggests that the hedonic state associated with activation of right dorsal anterior insula underpins esthetic experience for artworks.


Modulation of arm reaching movements during processing of arm/hand-related action verbs with and without emotional connotation.

  • Silvia Spadacenta‎ et al.
  • PloS one‎
  • 2014‎

The theory of embodied language states that language comprehension relies on an internal reenactment of the sensorimotor experience associated with the processed word or sentence. Most evidence in support of this hypothesis had been collected using linguistic material without any emotional connotation. For instance, it had been shown that processing of arm-related verbs, but not of those leg-related verbs, affects the planning and execution of reaching movements; however, at present it is unknown whether this effect is further modulated by verbs evoking an emotional experience. Showing such a modulation might shed light on a very debated issue, i.e. the way in which the emotional meaning of a word is processed. To this end, we assessed whether processing arm/hand-related verbs describing actions with negative connotations (e.g. to stab) affects reaching movements differently from arm/hand-related verbs describing actions with neutral connotation (e.g. to comb). We exploited a go/no-go paradigm in which healthy participants were required to perform arm-reaching movements toward a target when verbs expressing emotional hand actions, neutral hand actions or foot actions were shown, and to refrain from moving when no-effector-related verbs were presented. Reaction times and percentages of errors increased when the verb involved the same effector as used to give the response. However, we also found that the size of this interference decreased when the arm/hand-related verbs had a negative emotional connotation. Crucially, we show that such modulation only occurred when the verb semantics had to be retrieved. These results suggest that the comprehension of negatively valenced verbs might require the simultaneous reenactment of the neural circuitry associated with the processing of the emotion evoked by their meaning and of the neural circuitry associated with their motor features.


When early experiences build a wall to others' emotions: an electrophysiological and autonomic study.

  • Martina Ardizzi‎ et al.
  • PloS one‎
  • 2013‎

Facial expression of emotions is a powerful vehicle for communicating information about others' emotional states and it normally induces facial mimicry in the observers. The aim of this study was to investigate if early aversive experiences could interfere with emotion recognition, facial mimicry, and with the autonomic regulation of social behaviors. We conducted a facial emotion recognition task in a group of "street-boys" and in an age-matched control group. We recorded facial electromyography (EMG), a marker of facial mimicry, and respiratory sinus arrhythmia (RSA), an index of the recruitment of autonomic system promoting social behaviors and predisposition, in response to the observation of facial expressions of emotions. Results showed an over-attribution of anger, and reduced EMG responses during the observation of both positive and negative expressions only among street-boys. Street-boys also showed lower RSA after observation of facial expressions and ineffective RSA suppression during presentation of non-threatening expressions. Our findings suggest that early aversive experiences alter not only emotion recognition but also facial mimicry of emotions. These deficits affect the autonomic regulation of social behaviors inducing lower social predisposition after the visualization of facial expressions and an ineffective recruitment of defensive behavior in response to non-threatening expressions.


Both of us disgusted in My insula: the common neural basis of seeing and feeling disgust.

  • Bruno Wicker‎ et al.
  • Neuron‎
  • 2003‎

What neural mechanism underlies the capacity to understand the emotions of others? Does this mechanism involve brain areas normally involved in experiencing the same emotion? We performed an fMRI study in which participants inhaled odorants producing a strong feeling of disgust. The same participants observed video clips showing the emotional facial expression of disgust. Observing such faces and feeling disgust activated the same sites in the anterior insula and to a lesser extent in the anterior cingulate cortex. Thus, as observing hand actions activates the observer's motor representation of that action, observing an emotion activates the neural representation of that emotion. This finding provides a unifying mechanism for understanding the behaviors of others.


Action execution and action observation elicit mirror responses with the same temporal profile in human SII.

  • Maria Del Vecchio‎ et al.
  • Communications biology‎
  • 2020‎

The properties of the secondary somatosensory area (SII) have been described by many studies in monkeys and humans. Recent studies on monkeys, however, showed that beyond somatosensory stimuli, SII responds to a wider number of stimuli, a finding requiring a revision that human SII is purely sensorimotor. By recording cortical activity with stereotactic electroencephalography (stereo-EEG), we examined the properties of SI and SII in response to a motor task requiring reaching, grasping and manipulation, as well as the observation of the same actions. Furthermore, we functionally characterized this area with a set of clinical tests, including tactile, acoustical, and visual stimuli. The results showed that only SII activates both during execution and observation with a common temporal profile, whereas SI response were limited to execution. Together with their peculiar response to tactile stimuli, we conclude that the role of SII is pivotal also in the observation of actions involving haptic control.


Zoomed out: digital media use and depersonalization experiences during the COVID-19 lockdown.

  • Anna Ciaunica‎ et al.
  • Scientific reports‎
  • 2022‎

Depersonalisation is a common dissociative experience characterised by distressing feelings of being detached or 'estranged' from one's self and body and/or the world. The COVID-19 pandemic forcing millions of people to socially distance themselves from others and to change their lifestyle habits. We have conducted an online study of 622 participants worldwide to investigate the relationship between digital media-based activities, distal social interactions and peoples' sense of self during the lockdown as contrasted with before the pandemic. We found that increased use of digital media-based activities and online social e-meetings correlated with higher feelings of depersonalisation. We also found that the participants reporting higher experiences of depersonalisation, also reported enhanced vividness of negative emotions (as opposed to positive emotions). Finally, participants who reported that lockdown influenced their life to a greater extent had higher occurrences of depersonalisation experiences. Our findings may help to address key questions regarding well-being during a lockdown, in the general population. Our study points to potential risks related to overly sedentary, and hyper-digitalised lifestyle habits that may induce feelings of living in one's 'head' (mind), disconnected from one's body, self and the world.


Autonomic vulnerability to biased perception of social inclusion in borderline personality disorder.

  • Maria Lidia Gerra‎ et al.
  • Borderline personality disorder and emotion dysregulation‎
  • 2021‎

Individuals with Borderline Personality Disorder (BPD) feel rejected even when socially included. The pathophysiological mechanisms of this rejection bias are still unknown. Using the Cyberball paradigm, we investigated whether patients with BPD, display altered physiological responses to social inclusion and ostracism, as assessed by changes in Respiratory Sinus Arrhythmia (RSA).


Perspective-dependent reactivity of sensorimotor mu rhythm in alpha and beta ranges during action observation: an EEG study.

  • Monica Angelini‎ et al.
  • Scientific reports‎
  • 2018‎

During action observation, several visual features of observed actions can modulate the level of sensorimotor reactivity in the onlooker. Among possibly relevant parameters, one of the less investigated in humans is the visual perspective from which actions are observed. In the present EEG study, we assessed the reactivity of alpha and beta mu rhythm subcomponents to four different visual perspectives, defined by the position of the observer relative to the moving agent (identifying first-person, third-person and lateral viewpoints) and by the anatomical compatibility of observed effectors with self- or other individual's body (identifying ego- and allo-centric viewpoints, respectively). Overall, the strongest sensorimotor responsiveness emerged for first-person perspective. Furthermore, we found different patterns of perspective-dependent reactivity in rolandic alpha and beta ranges, with the former tuned to visuospatial details of observed actions and the latter tuned to action-related parameters (such as the direction of actions relative to the observer), suggesting a higher recruitment of beta motor rhythm in face-to-face interactions. The impact of these findings on the selection of most effective action stimuli for "Action Observation Treatment" neurorehabilitative protocols is discussed.


Understanding others' regret: a FMRI study.

  • Nicola Canessa‎ et al.
  • PloS one‎
  • 2009‎

Previous studies showed that the understanding of others' basic emotional experiences is based on a "resonant" mechanism, i.e., on the reactivation, in the observer's brain, of the cerebral areas associated with those experiences. The present study aimed to investigate whether the same neural mechanism is activated both when experiencing and attending complex, cognitively-generated, emotions. A gambling task and functional-Magnetic-Resonance-Imaging (fMRI) were used to test this hypothesis using regret, the negative cognitively-based emotion resulting from an unfavorable counterfactual comparison between the outcomes of chosen and discarded options. Do the same brain structures that mediate the experience of regret become active in the observation of situations eliciting regret in another individual? Here we show that observing the regretful outcomes of someone else's choices activates the same regions that are activated during a first-person experience of regret, i.e. the ventromedial prefrontal cortex, anterior cingulate cortex and hippocampus. These results extend the possible role of a mirror-like mechanism beyond basic emotions.


Mirth and laughter elicited by electrical stimulation of the human anterior cingulate cortex.

  • Fausto Caruana‎ et al.
  • Cortex; a journal devoted to the study of the nervous system and behavior‎
  • 2015‎

Laughter is a complex motor behavior that, typically, expresses mirth. Despite its fundamental role in social life, knowledge about the neural basis of laughter is very limited and mostly based on a few electrical stimulation (ES) studies carried out in epileptic patients. In these studies laughter was elicited from temporal areas where it was accompanied by mirth and from frontal areas plus an anterior cingulate case where laughter without mirth was observed. On the basis of these findings, it has been proposed a dichotomy between temporal lobe areas processing the emotional content of laughter and anterior cingulate cortex (ACC) and motor areas responsible of laughter production. The present study is aimed to understand the role of ACC in laughter. We report the effects of stimulation of 10 rostral, pregenual ACC (pACC) patients in which the ES elicited laughter. In half of the patients ES elicited a clear burst of laughter with mirth, while in the other half mirth was not evident. This large dataset allow us to offer a more reliable picture of the functional contribute of this region in laughter, and to precisely localize it in the cingulate cortex. We conclude that the pACC is involved in both the motor and the affective components of emotions, and challenge the validity of a sharp dichotomy between motor and emotional centers for laughing. Finally, we suggest a possible anatomical network for the production of positive emotional expressions.


Observation of others' actions during limb immobilization prevents the subsequent decay of motor performance.

  • Doriana De Marco‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2021‎

There is rich clinical evidence that observing normally executed actions promotes the recovery of the corresponding action execution in patients with motor deficits. In this study, we assessed the ability of action observation to prevent the decay of healthy individuals' motor abilities following upper-limb immobilization. To this end, upper-limb kinematics was recorded in healthy participants while they performed three reach-to-grasp movements before immobilization and the same movements after 16 h of immobilization. The participants were subdivided into two groups; the experimental group observed, during the immobilization, the same reach-to-grasp movements they had performed before immobilization, whereas the control group observed natural scenarios. After bandage removal, motor impairment in performing reach-to-grasp movements was milder in the experimental group. These findings support the hypothesis that action observation, via the mirror mechanism, plays a protective role against the decline of motor performance induced by limb nonuse. From this perspective, action observation therapy is a promising tool for anticipating rehabilitation onset in clinical conditions involving limb nonuse, thus reducing the burden of further rehabilitation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: