Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 34 papers

Homozygosity mapping reveals mutations of GRXCR1 as a cause of autosomal-recessive nonsyndromic hearing impairment.

  • Margit Schraders‎ et al.
  • American journal of human genetics‎
  • 2010‎

We identified overlapping homozygous regions within the DFNB25 locus in two Dutch and ten Pakistani families with sensorineural autosomal-recessive nonsyndromic hearing impairment (arNSHI). Only one of the families, W98-053, was not consanguineous, and its sibship pointed toward a reduced critical region of 0.9 Mb. This region contained the GRXCR1 gene, and the orthologous mouse gene was described to be mutated in the pirouette (pi) mutant with resulting hearing loss and circling behavior. Sequence analysis of the GRXCR1 gene in hearing-impaired family members revealed splice-site mutations in two Dutch families and a missense and nonsense mutation, respectively, in two Pakistani families. The splice-site mutations are predicted to cause frameshifts and premature stop codons. In family W98-053, this could be confirmed by cDNA analysis. GRXCR1 is predicted to contain a GRX-like domain. GRX domains are involved in reversible S-glutathionylation of proteins and thereby in the modulation of activity and/or localization of these proteins. The missense mutation is located in this domain, whereas the nonsense and splice-site mutations may result in complete or partial absence of the GRX-like domain or of the complete protein. Hearing loss in patients with GRXCR1 mutations is congenital and is moderate to profound. Progression of the hearing loss was observed in family W98-053. Vestibular dysfunction was observed in some but not all affected individuals. Quantitative analysis of GRXCR1 transcripts in fetal and adult human tissues revealed a preferential expression of the gene in fetal cochlea, which may explain the nonsyndromic nature of the hearing impairment.


The Genetic Basis of Mendelian Phenotypes: Discoveries, Challenges, and Opportunities.

  • Jessica X Chong‎ et al.
  • American journal of human genetics‎
  • 2015‎

Discovering the genetic basis of a Mendelian phenotype establishes a causal link between genotype and phenotype, making possible carrier and population screening and direct diagnosis. Such discoveries also contribute to our knowledge of gene function, gene regulation, development, and biological mechanisms that can be used for developing new therapeutics. As of February 2015, 2,937 genes underlying 4,163 Mendelian phenotypes have been discovered, but the genes underlying ∼50% (i.e., 3,152) of all known Mendelian phenotypes are still unknown, and many more Mendelian conditions have yet to be recognized. This is a formidable gap in biomedical knowledge. Accordingly, in December 2011, the NIH established the Centers for Mendelian Genomics (CMGs) to provide the collaborative framework and infrastructure necessary for undertaking large-scale whole-exome sequencing and discovery of the genetic variants responsible for Mendelian phenotypes. In partnership with 529 investigators from 261 institutions in 36 countries, the CMGs assessed 18,863 samples from 8,838 families representing 579 known and 470 novel Mendelian phenotypes as of January 2015. This collaborative effort has identified 956 genes, including 375 not previously associated with human health, that underlie a Mendelian phenotype. These results provide insight into study design and analytical strategies, identify novel mechanisms of disease, and reveal the extensive clinical variability of Mendelian phenotypes. Discovering the gene underlying every Mendelian phenotype will require tackling challenges such as worldwide ascertainment and phenotypic characterization of families affected by Mendelian conditions, improvement in sequencing and analytical techniques, and pervasive sharing of phenotypic and genomic data among researchers, clinicians, and families.


Guidelines for Large-Scale Sequence-Based Complex Trait Association Studies: Lessons Learned from the NHLBI Exome Sequencing Project.

  • Paul L Auer‎ et al.
  • American journal of human genetics‎
  • 2016‎

Massively parallel whole-genome sequencing (WGS) data have ushered in a new era in human genetics. These data are now being used to understand the role of rare variants in complex traits and to advance the goals of precision medicine. The technological and computing advances that have enabled us to generate WGS data on thousands of individuals have also outpaced our ability to perform analyses in scientifically and statistically rigorous and thoughtful ways. The past several years have witnessed the application of whole-exome sequencing (WES) to complex traits and diseases. From our analysis of NHLBI Exome Sequencing Project (ESP) data, not only have a number of important disease and complex trait association findings emerged, but our collective experience offers some valuable lessons for WGS initiatives. These include caveats associated with generating automated pipelines for quality control and analysis of rare variants; the importance of studying minority populations; sample size requirements and efficient study designs for identifying rare-variant associations; and the significance of incidental findings in population-based genetic research. With the ESP as an example, we offer guidance and a framework on how to conduct a large-scale association study in the era of WGS.


Mutations in TBC1D24, a gene associated with epilepsy, also cause nonsyndromic deafness DFNB86.

  • Atteeq U Rehman‎ et al.
  • American journal of human genetics‎
  • 2014‎

Inherited deafness is clinically and genetically heterogeneous. We recently mapped DFNB86, a locus associated with nonsyndromic deafness, to chromosome 16p. In this study, whole-exome sequencing was performed with genomic DNA from affected individuals from three large consanguineous families in which markers linked to DFNB86 segregate with profound deafness. Analyses of these data revealed homozygous mutation c.208G>T (p.Asp70Tyr) or c.878G>C (p.Arg293Pro) in TBC1D24 as the underlying cause of deafness in the three families. Sanger sequence analysis of TBC1D24 in an additional large family in which deafness segregates with DFNB86 identified the c.208G>T (p.Asp70Tyr) substitution. These mutations affect TBC1D24 amino acid residues that are conserved in orthologs ranging from fruit fly to human. Neither variant was observed in databases of single-nucleotide variants or in 634 chromosomes from ethnically matched control subjects. TBC1D24 in the mouse inner ear was immunolocalized predominantly to spiral ganglion neurons, indicating that DFNB86 deafness might be an auditory neuropathy spectrum disorder. Previously, six recessive mutations in TBC1D24 were reported to cause seizures (hearing loss was not reported) ranging in severity from epilepsy with otherwise normal development to epileptic encephalopathy resulting in childhood death. Two of our four families in which deafness segregates with mutant alleles of TBC1D24 were available for neurological examination. Cosegregation of epilepsy and deafness was not observed in these two families. Although the causal relationship between genotype and phenotype is not presently understood, our findings, combined with published data, indicate that recessive alleles of TBC1D24 can cause either epilepsy or nonsyndromic deafness.


Frequency and Complexity of De Novo Structural Mutation in Autism.

  • William M Brandler‎ et al.
  • American journal of human genetics‎
  • 2016‎

Genetic studies of autism spectrum disorder (ASD) have established that de novo duplications and deletions contribute to risk. However, ascertainment of structural variants (SVs) has been restricted by the coarse resolution of current approaches. By applying a custom pipeline for SV discovery, genotyping, and de novo assembly to genome sequencing of 235 subjects (71 affected individuals, 26 healthy siblings, and their parents), we compiled an atlas of 29,719 SV loci (5,213/genome), comprising 11 different classes. We found a high diversity of de novo mutations, the majority of which were undetectable by previous methods. In addition, we observed complex mutation clusters where combinations of de novo SVs, nucleotide substitutions, and indels occurred as a single event. We estimate a high rate of structural mutation in humans (20%) and propose that genetic risk for ASD is attributable to an elevated frequency of gene-disrupting de novo SVs, but not an elevated rate of genome rearrangement.


A Rare Variant Nonparametric Linkage Method for Nuclear and Extended Pedigrees with Application to Late-Onset Alzheimer Disease via WGS Data.

  • Linhai Zhao‎ et al.
  • American journal of human genetics‎
  • 2019‎

To analyze family-based whole-genome sequence (WGS) data for complex traits, we developed a rare variant (RV) non-parametric linkage (NPL) analysis method, which has advantages over association methods. The RV-NPL differs from the NPL in that RVs are analyzed, and allele sharing among affected relative-pairs is estimated only for minor alleles. Analyzing families can increase power because causal variants with familial aggregation usually have larger effect sizes than those underlying sporadic diseases. Differing from association analysis, for NPL only affected individuals are analyzed, which can increase power, since unaffected family members can be susceptibility variant carriers. RV-NPL is robust to population substructure and admixture, inclusion of nonpathogenic variants, as well as allelic and locus heterogeneity and can readily be applied outside of coding regions. In contrast to analyzing common variants using NPL, where loci localize to large genomic regions (e.g., >50 Mb), mapped regions are well defined for RV-NPL. Using simulation studies, we demonstrate that RV-NPL is substantially more powerful than applying traditional NPL methods to analyze RVs. The RV-NPL was applied to analyze 107 late-onset Alzheimer disease (LOAD) pedigrees of Caribbean Hispanic and European ancestry with WGS data, and statistically significant linkage (LOD ≥ 3.8) was found with RVs in PSMF1 and PTPN21 which have been shown to be involved in LOAD etiology. Additionally, nominally significant linkage was observed with RVs in ABCA7, ACE, EPHA1, and SORL1, genes that were previously reported to be associated with LOAD. RV-NPL is an ideal method to elucidate the genetic etiology of complex familial diseases.


Delineation of a Human Mendelian Disorder of the DNA Demethylation Machinery: TET3 Deficiency.

  • David B Beck‎ et al.
  • American journal of human genetics‎
  • 2020‎

Germline pathogenic variants in chromatin-modifying enzymes are a common cause of pediatric developmental disorders. These enzymes catalyze reactions that regulate epigenetic inheritance via histone post-translational modifications and DNA methylation. Cytosine methylation (5-methylcytosine [5mC]) of DNA is the quintessential epigenetic mark, yet no human Mendelian disorder of DNA demethylation has yet been delineated. Here, we describe in detail a Mendelian disorder caused by the disruption of DNA demethylation. TET3 is a methylcytosine dioxygenase that initiates DNA demethylation during early zygote formation, embryogenesis, and neuronal differentiation and is intolerant to haploinsufficiency in mice and humans. We identify and characterize 11 cases of human TET3 deficiency in eight families with the common phenotypic features of intellectual disability and/or global developmental delay; hypotonia; autistic traits; movement disorders; growth abnormalities; and facial dysmorphism. Mono-allelic frameshift and nonsense variants in TET3 occur throughout the coding region. Mono-allelic and bi-allelic missense variants localize to conserved residues; all but one such variant occur within the catalytic domain, and most display hypomorphic function in an assay of catalytic activity. TET3 deficiency and other Mendelian disorders of the epigenetic machinery show substantial phenotypic overlap, including features of intellectual disability and abnormal growth, underscoring shared disease mechanisms.


Bi-allelic Variants in DYNC1I2 Cause Syndromic Microcephaly with Intellectual Disability, Cerebral Malformations, and Dysmorphic Facial Features.

  • Muhammad Ansar‎ et al.
  • American journal of human genetics‎
  • 2019‎

Cargo transport along the cytoplasmic microtubular network is essential for neuronal function, and cytoplasmic dynein-1 is an established molecular motor that is critical for neurogenesis and homeostasis. We performed whole-exome sequencing, homozygosity mapping, and chromosomal microarray studies in five individuals from three independent pedigrees and identified likely-pathogenic variants in DYNC1I2 (Dynein Cytoplasmic 1 Intermediate Chain 2), encoding a component of the cytoplasmic dynein 1 complex. In a consanguineous Pakistani family with three affected individuals presenting with microcephaly, severe intellectual disability, simplification of cerebral gyration, corpus callosum hypoplasia, and dysmorphic facial features, we identified a homozygous splice donor site variant (GenBank: NM_001378.2:c.607+1G>A). We report two additional individuals who have similar neurodevelopmental deficits and craniofacial features and harbor deleterious variants; one individual bears a c.740A>G (p.Tyr247Cys) change in trans with a 374 kb deletion encompassing DYNC1I2, and an unrelated individual harbors the compound-heterozygous variants c.868C>T (p.Gln290∗) and c.740A>G (p.Tyr247Cys). Zebrafish larvae subjected to CRISPR-Cas9 gene disruption or transient suppression of dync1i2a displayed significantly altered craniofacial patterning with concomitant reduction in head size. We monitored cell death and cell cycle progression in dync1i2a zebrafish models and observed significantly increased apoptosis, likely due to prolonged mitosis caused by abnormal spindle morphology, and this finding offers initial insights into the cellular basis of microcephaly. Additionally, complementation studies in zebrafish demonstrate that p.Tyr247Cys attenuates gene function, consistent with protein structural analysis. Our genetic and functional data indicate that DYNC1I2 dysfunction probably causes an autosomal-recessive microcephaly syndrome and highlight further the critical roles of the dynein-1 complex in neurodevelopment.


FUT2 Variants Confer Susceptibility to Familial Otitis Media.

  • Regie Lyn P Santos-Cortez‎ et al.
  • American journal of human genetics‎
  • 2018‎

Non-secretor status due to homozygosity for the common FUT2 variant c.461G>A (p.Trp154∗) is associated with either risk for autoimmune diseases or protection against viral diarrhea and HIV. We determined the role of FUT2 in otitis media susceptibility by obtaining DNA samples from 609 multi-ethnic families and simplex case subjects with otitis media. Exome and Sanger sequencing, linkage analysis, and Fisher exact and transmission disequilibrium tests (TDT) were performed. The common FUT2 c.604C>T (p.Arg202∗) variant co-segregates with otitis media in a Filipino pedigree (LOD = 4.0). Additionally, a rare variant, c.412C>T (p.Arg138Cys), is associated with recurrent/chronic otitis media in European-American children (p = 1.2 × 10-5) and US trios (TDT p = 0.01). The c.461G>A (p.Trp154∗) variant was also over-transmitted in US trios (TDT p = 0.01) and was associated with shifts in middle ear microbiota composition (PERMANOVA p < 10-7) and increased biodiversity. When all missense and nonsense variants identified in multi-ethnic US trios with CADD > 20 were combined, FUT2 variants were over-transmitted in trios (TDT p = 0.001). Fut2 is transiently upregulated in mouse middle ear after inoculation with non-typeable Haemophilus influenzae. Four FUT2 variants-namely p.Ala104Val, p.Arg138Cys, p.Trp154∗, and p.Arg202∗-reduced A antigen in mutant-transfected COS-7 cells, while the nonsense variants also reduced FUT2 protein levels. Common and rare FUT2 variants confer susceptibility to otitis media, likely by modifying the middle ear microbiome through regulation of A antigen levels in epithelial cells. Our families demonstrate marked intra-familial genetic heterogeneity, suggesting that multiple combinations of common and rare variants plus environmental factors influence the individual otitis media phenotype as a complex trait.


Regulatory variants in TCF7L2 are associated with thoracic aortic aneurysm.

  • Tanmoy Roychowdhury‎ et al.
  • American journal of human genetics‎
  • 2021‎

Thoracic aortic aneurysm (TAA) is characterized by dilation of the aortic root or ascending/descending aorta. TAA is a heritable disease that can be potentially life threatening. While 10%-20% of TAA cases are caused by rare, pathogenic variants in single genes, the origin of the majority of TAA cases remains unknown. A previous study implicated common variants in FBN1 with TAA disease risk. Here, we report a genome-wide scan of 1,351 TAA-affected individuals and 18,295 control individuals from the Cardiovascular Health Improvement Project and Michigan Genomics Initiative at the University of Michigan. We identified a genome-wide significant association with TAA for variants within the third intron of TCF7L2 following replication with meta-analysis of four additional independent cohorts. Common variants in this locus are the strongest known genetic risk factor for type 2 diabetes. Although evidence indicates the presence of different causal variants for TAA and type 2 diabetes at this locus, we observed an opposite direction of effect. The genetic association for TAA colocalizes with an aortic eQTL of TCF7L2, suggesting a functional relationship. These analyses predict an association of higher expression of TCF7L2 with TAA disease risk. In vitro, we show that upregulation of TCF7L2 is associated with BCL2 repression promoting vascular smooth muscle cell apoptosis, a key driver of TAA disease.


Mutations in the alpha 1,2-mannosidase gene, MAN1B1, cause autosomal-recessive intellectual disability.

  • Muhammad Arshad Rafiq‎ et al.
  • American journal of human genetics‎
  • 2011‎

We have used genome-wide genotyping to identify an overlapping homozygosity-by-descent locus on chromosome 9q34.3 (MRT15) in four consanguineous families affected by nonsyndromic autosomal-recessive intellectual disability (NS-ARID) and one in which the patients show additional clinical features. Four of the families are from Pakistan, and one is from Iran. Using a combination of next-generation sequencing and Sanger sequencing, we have identified mutations in the gene MAN1B1, encoding a mannosyl oligosaccharide, alpha 1,2-mannosidase. In one Pakistani family, MR43, a homozygous nonsense mutation (RefSeq number NM_016219.3: c.1418G>A [p.Trp473*]), segregated with intellectual disability and additional dysmorphic features. We also identified the missense mutation c. 1189G>A (p.Glu397Lys; RefSeq number NM_016219.3), which segregates with NS-ARID in three families who come from the same village and probably have shared inheritance. In the Iranian family, the missense mutation c.1000C>T (p.Arg334Cys; RefSeq number NM_016219.3) also segregates with NS-ARID. Both missense mutations are at amino acid residues that are conserved across the animal kingdom, and they either reduce k(cat) by ∼1300-fold or disrupt stable protein expression in mammalian cells. MAN1B1 is one of the few NS-ARID genes with an elevated mutation frequency in patients with NS-ARID from different populations.


TM4SF20 ancestral deletion and susceptibility to a pediatric disorder of early language delay and cerebral white matter hyperintensities.

  • Wojciech Wiszniewski‎ et al.
  • American journal of human genetics‎
  • 2013‎

White matter hyperintensities (WMHs) of the brain are important markers of aging and small-vessel disease. WMHs are rare in healthy children and, when observed, often occur with comorbid neuroinflammatory or vasculitic processes. Here, we describe a complex 4 kb deletion in 2q36.3 that segregates with early childhood communication disorders and WMH in 15 unrelated families predominantly from Southeast Asia. The premature brain aging phenotype with punctate and multifocal WMHs was observed in ~70% of young carrier parents who underwent brain MRI. The complex deletion removes the penultimate exon 3 of TM4SF20, a gene encoding a transmembrane protein of unknown function. Minigene analysis showed that the resultant net loss of an exon introduces a premature stop codon, which, in turn, leads to the generation of a stable protein that fails to target to the plasma membrane and accumulates in the cytoplasm. Finally, we report this deletion to be enriched in individuals of Vietnamese Kinh descent, with an allele frequency of about 1%, embedded in an ancestral haplotype. Our data point to a constellation of early language delay and WMH phenotypes, driven by a likely toxic mechanism of TM4SF20 truncation, and highlight the importance of understanding and managing population-specific low-frequency pathogenic alleles.


SEQSpark: A Complete Analysis Tool for Large-Scale Rare Variant Association Studies Using Whole-Genome and Exome Sequence Data.

  • Di Zhang‎ et al.
  • American journal of human genetics‎
  • 2017‎

Massively parallel sequencing technologies provide great opportunities for discovering rare susceptibility variants involved in complex disease etiology via large-scale imputation and exome and whole-genome sequence-based association studies. Due to modest effect sizes, large sample sizes of tens to hundreds of thousands of individuals are required for adequately powered studies. Current analytical tools are obsolete when it comes to handling these large datasets. To facilitate the analysis of large-scale sequence-based studies, we developed SEQSpark which implements parallel processing based on Spark to increase the speed and efficiency of performing data quality control, annotation, and association analysis. To demonstrate the versatility and speed of SEQSpark, we analyzed whole-genome sequence data from the UK10K, testing for associations with waist-to-hip ratios. The analysis, which was completed in 1.5 hr, included loading data, annotation, principal component analysis, and single variant and rare variant aggregate association analysis of >9 million variants. For rare variant aggregate analysis, an exome-wide significant association (p < 2.5 × 10-6) was observed with CCDC62 (SKAT-O [p = 6.89 × 10-7], combined multivariate collapsing [p = 1.48 × 10-6], and burden of rare variants [p = 1.48 × 10-6]). SEQSpark was also used to analyze 50,000 simulated exomes and it required 1.75 hr for the analysis of a quantitative trait using several rare variant aggregate association methods. Additionally, the performance of SEQSpark was compared to Variant Association Tools and PLINK/SEQ. SEQSpark was always faster and in some situations computation was reduced to a hundredth of the time. SEQSpark will empower large sequence-based epidemiological studies to quickly elucidate genetic variation involved in the etiology of complex traits.


Functional null mutations of MSRB3 encoding methionine sulfoxide reductase are associated with human deafness DFNB74.

  • Zubair M Ahmed‎ et al.
  • American journal of human genetics‎
  • 2011‎

The DFNB74 locus for autosomal-recessive, nonsyndromic deafness segregating in three families was previously mapped to a 5.36 Mb interval on chromosome 12q14.2-q15. Subsequently, we ascertained five additional consanguineous families in which deafness segregated with markers at this locus and refined the critical interval to 2.31 Mb. We then sequenced the protein-coding exons of 18 genes in this interval. The affected individuals of six apparently unrelated families were homozygous for the same transversion (c.265T>G) in MSRB3, which encodes a zinc-containing methionine sulfoxide reductase B3. c.265T>G results in a substitution of glycine for cysteine (p.Cys89Gly), and this substitution cosegregates with deafness in the six DFNB74 families. This cysteine residue of MSRB3 is conserved in orthologs from yeast to humans and is involved in binding structural zinc. In vitro, p.Cys89Gly abolished zinc binding and MSRB3 enzymatic activity, indicating that p.Cys89Gly is a loss-of-function allele. The affected individuals in two other families were homozygous for a transition mutation (c.55T>C), which results in a nonsense mutation (p.Arg19X) in alternatively spliced exon 3, encoding a mitochondrial localization signal. This finding suggests that DFNB74 deafness is due to a mitochondrial dysfunction. In a cohort of 1,040 individuals (aged 53-67 years) of European ancestry, we found no association between 17 tagSNPs for MSRB3 and age-related hearing loss. Mouse Msrb3 is expressed widely. In the inner ear, it is found in the sensory epithelium of the organ of Corti and vestibular end organs as well as in cells of the spiral ganglion. Taken together, MSRB3-catalyzed reduction of methionine sulfoxides to methionine is essential for hearing.


Bi-allelic variants in OGDHL cause a neurodevelopmental spectrum disease featuring epilepsy, hearing loss, visual impairment, and ataxia.

  • Zheng Yie Yap‎ et al.
  • American journal of human genetics‎
  • 2021‎

The 2-oxoglutarate dehydrogenase-like (OGDHL) protein is a rate-limiting enzyme in the Krebs cycle that plays a pivotal role in mitochondrial metabolism. OGDHL expression is restricted mainly to the brain in humans. Here, we report nine individuals from eight unrelated families carrying bi-allelic variants in OGDHL with a range of neurological and neurodevelopmental phenotypes including epilepsy, hearing loss, visual impairment, gait ataxia, microcephaly, and hypoplastic corpus callosum. The variants include three homozygous missense variants (p.Pro852Ala, p.Arg244Trp, and p.Arg299Gly), three compound heterozygous single-nucleotide variants (p.Arg673Gln/p.Val488Val, p.Phe734Ser/p.Ala327Val, and p.Trp220Cys/p.Asp491Val), one homozygous frameshift variant (p.Cys553Leufs∗16), and one homozygous stop-gain variant (p.Arg440Ter). To support the pathogenicity of the variants, we developed a novel CRISPR-Cas9-mediated tissue-specific knockout with cDNA rescue system for dOgdh, the Drosophila ortholog of human OGDHL. Pan-neuronal knockout of dOgdh led to developmental lethality as well as defects in Krebs cycle metabolism, which was fully rescued by expression of wild-type dOgdh. Studies using the Drosophila system indicate that p.Arg673Gln, p.Phe734Ser, and p.Arg299Gly are severe loss-of-function alleles, leading to developmental lethality, whereas p.Pro852Ala, p.Ala327Val, p.Trp220Cys, p.Asp491Val, and p.Arg244Trp are hypomorphic alleles, causing behavioral defects. Transcript analysis from fibroblasts obtained from the individual carrying the synonymous variant (c.1464T>C [p.Val488Val]) in family 2 showed that the synonymous variant affects splicing of exon 11 in OGDHL. Human neuronal cells with OGDHL knockout exhibited defects in mitochondrial respiration, indicating the essential role of OGDHL in mitochondrial metabolism in humans. Together, our data establish that the bi-allelic variants in OGDHL are pathogenic, leading to a Mendelian neurodevelopmental disease in humans.


Bi-allelic Variants in IQSEC1 Cause Intellectual Disability, Developmental Delay, and Short Stature.

  • Muhammad Ansar‎ et al.
  • American journal of human genetics‎
  • 2019‎

We report two consanguineous families with probands that exhibit intellectual disability, developmental delay, short stature, aphasia, and hypotonia in which homozygous non-synonymous variants were identified in IQSEC1 (GenBank: NM_001134382.3). In a Pakistani family, the IQSEC1 segregating variant is c.1028C>T (p.Thr343Met), while in a Saudi Arabian family the variant is c.962G>A (p.Arg321Gln). IQSEC1-3 encode guanine nucleotide exchange factors for the small GTPase ARF6 and their loss affects a variety of actin-dependent cellular processes, including AMPA receptor trafficking at synapses. The ortholog of IQSECs in the fly is schizo and its loss affects growth cone guidance at the midline in the CNS, also an actin-dependent process. Overexpression of the reference IQSEC1 cDNA in wild-type flies is lethal, but overexpression of the two variant IQSEC1 cDNAs did not affect viability. Loss of schizo caused embryonic lethality that could be rescued to 2nd instar larvae by moderate expression of the human reference cDNA. However, the p.Arg321Gln and p.Thr343Met variants failed to rescue embryonic lethality. These data indicate that the variants behave as loss-of-function mutations. We also show that schizo in photoreceptors is required for phototransduction. Finally, mice with a conditional Iqsec1 deletion in cortical neurons exhibited an increased density of dendritic spines with an immature morphology. The phenotypic similarity of the affecteds and the functional experiments in flies and mice indicate that IQSEC1 variants are the cause of a recessive disease with intellectual disability, developmental delay, and short stature, and that axonal guidance and dendritic projection defects as well as dendritic spine dysgenesis may underlie disease pathogenesis.


MAT2A mutations predispose individuals to thoracic aortic aneurysms.

  • Dong-chuan Guo‎ et al.
  • American journal of human genetics‎
  • 2015‎

Up to 20% of individuals who have thoracic aortic aneurysms or acute aortic dissections but who do not have syndromic features have a family history of thoracic aortic disease. Significant genetic heterogeneity is established for this familial condition. Whole-genome linkage analysis and exome sequencing of distant relatives from a large family with autosomal-dominant inheritance of thoracic aortic aneurysms variably associated with the bicuspid aortic valve was used for identification of additional genes predisposing individuals to this condition. A rare variant, c.1031A>C (p.Glu344Ala), was identified in MAT2A, which encodes methionine adenosyltransferase II alpha (MAT IIα). This variant segregated with disease in the family, and Sanger sequencing of DNA from affected probands from unrelated families with thoracic aortic disease identified another MAT2A rare variant, c.1067G>A (p.Arg356His). Evidence that these variants predispose individuals to thoracic aortic aneurysms and dissections includes the following: there is a paucity of rare variants in MAT2A in the population; amino acids Glu344 and Arg356 are conserved from humans to zebrafish; and substitutions of these amino acids in MAT Iα are found in individuals with hypermethioninemia. Structural analysis suggested that p.Glu344Ala and p.Arg356His disrupt MAT IIα enzyme function. Knockdown of mat2aa in zebrafish via morpholino oligomers disrupted cardiovascular development. Co-transfected wild-type human MAT2A mRNA rescued defects of zebrafish cardiovascular development at significantly higher levels than mRNA edited to express either the Glu344 or Arg356 mutants, providing further evidence that the p.Glu344Ala and p.Arg356His substitutions impair MAT IIα function. The data presented here support the conclusion that rare genetic variants in MAT2A predispose individuals to thoracic aortic disease.


Biallelic truncating mutations in FMN2, encoding the actin-regulatory protein Formin 2, cause nonsyndromic autosomal-recessive intellectual disability.

  • Rosalind Law‎ et al.
  • American journal of human genetics‎
  • 2014‎

Dendritic spines represent the major site of neuronal activity in the brain; they serve as the receiving point for neurotransmitters and undergo rapid activity-dependent morphological changes that correlate with learning and memory. Using a combination of homozygosity mapping and next-generation sequencing in two consanguineous families affected by nonsyndromic autosomal-recessive intellectual disability, we identified truncating mutations in formin 2 (FMN2), encoding a protein that belongs to the formin family of actin cytoskeleton nucleation factors and is highly expressed in the maturing brain. We found that FMN2 localizes to punctae along dendrites and that germline inactivation of mouse Fmn2 resulted in animals with decreased spine density; such mice were previously demonstrated to have a conditioned fear-learning defect. Furthermore, patient neural cells derived from induced pluripotent stem cells showed correlated decreased synaptic density. Thus, FMN2 mutations link intellectual disability either directly or indirectly to the regulation of actin-mediated synaptic spine density.


Rare copy number variants disrupt genes regulating vascular smooth muscle cell adhesion and contractility in sporadic thoracic aortic aneurysms and dissections.

  • Siddharth K Prakash‎ et al.
  • American journal of human genetics‎
  • 2010‎

Thoracic aortic aneurysms and dissections (TAAD) cause significant morbidity and mortality, but the genetic origins of TAAD remain largely unknown. In a genome-wide analysis of 418 sporadic TAAD cases, we identified 47 copy number variant (CNV) regions that were enriched in or unique to TAAD patients compared to population controls. Gene ontology, expression profiling, and network analysis showed that genes within TAAD CNVs regulate smooth muscle cell adhesion or contractility and interact with the smooth muscle-specific isoforms of α-actin and β-myosin, which are known to cause familial TAAD when altered. Enrichment of these gene functions in rare CNVs was replicated in independent cohorts with sporadic TAAD (STAAD, n = 387) and inherited TAAD (FTAAD, n = 88). The overall prevalence of rare CNVs (23%) was significantly increased in FTAAD compared with STAAD patients (Fisher's exact test, p = 0.03). Our findings suggest that rare CNVs disrupting smooth muscle adhesion or contraction contribute to both sporadic and familial disease.


Mutation in NSUN2, which encodes an RNA methyltransferase, causes autosomal-recessive intellectual disability.

  • Muzammil Ahmad Khan‎ et al.
  • American journal of human genetics‎
  • 2012‎

Causes of autosomal-recessive intellectual disability (ID) have, until very recently, been under researched because of the high degree of genetic heterogeneity. However, now that genome-wide approaches can be applied to single multiplex consanguineous families, the identification of genes harboring disease-causing mutations by autozygosity mapping is expanding rapidly. Here, we have mapped a disease locus in a consanguineous Pakistani family affected by ID and distal myopathy. We genotyped family members on genome-wide SNP microarrays and used the data to determine a single 2.5 Mb homozygosity-by-descent (HBD) locus in region 5p15.32-p15.31; we identified the missense change c.2035G>A (p.Gly679Arg) at a conserved residue within NSUN2. This gene encodes a methyltransferase that catalyzes formation of 5-methylcytosine at C34 of tRNA-leu(CAA) and plays a role in spindle assembly during mitosis as well as chromosome segregation. In mouse brains, we show that NSUN2 localizes to the nucleolus of Purkinje cells in the cerebellum. The effects of the mutation were confirmed by the transfection of wild-type and mutant constructs into cells and subsequent immunohistochemistry. We show that mutation to arginine at this residue causes NSUN2 to fail to localize within the nucleolus. The ID combined with a unique profile of comorbid features presented here makes this an important genetic discovery, and the involvement of NSUN2 highlights the role of RNA methyltransferase in human neurocognitive development.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: