Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 14 papers out of 14 papers

Curcumin inhibits glyoxalase 1: a possible link to its anti-inflammatory and anti-tumor activity.

  • Thore Santel‎ et al.
  • PloS one‎
  • 2008‎

Glyoxalases (Glo1 and Glo2) are involved in the glycolytic pathway by detoxifying the reactive methylglyoxal (MGO) into D-lactate in a two-step reaction using glutathione (GSH) as cofactor. Inhibitors of glyoxalases are considered as anti-inflammatory and anti-carcinogenic agents. The recent finding that various polyphenols modulate Glo1 activity has prompted us to assess curcumin's potency as an Glo1 inhibitor.


Evaluation of the In Vitro Efficacy of Artemisia annua, Rumex abyssinicus, and Catha edulis Forsk Extracts in Cancer and Trypanosoma brucei Cells.

  • Netsanet Worku‎ et al.
  • ISRN biochemistry‎
  • 2013‎

The current drugs against sleeping sickness are derived from cancer chemotherapeutic approaches. Herein, we aimed at evaluating the in vitro effect of alcoholic extracts of Artemisia annua (AMR), Rumex abyssinicus (RMA), and Catha edulis Forsk (CEF) on proliferation/viability of 1321N1 astrocytoma, MCF-7 breast cancer, THP-1 leukemia, and LNCaP, Du-145, and PC-3 prostate cancer cells and on Trypanosoma brucei cells. Proliferation of tumor cells was evaluated by WST-1 assay and viability/behaviour of T. brucei by cell counting and light microscopy. CEF was the most efficient growth inhibitor in comparison to AMR and RMA. Nevertheless, in LNCaP and THP-1 cells, all extracts significantly inhibited tumor growth at 3 μg/mL. All extracts inhibited proliferation of T. brucei cells in a concentration-dependent manner. Microscopic analysis revealed that 95% of the T. brucei cells died when exposed to 33 μg/mL CEF for 3 hrs. Similar results were obtained using 33 μg/mL AMR for 6 hrs. In case of RMA, however, higher concentrations were necessary to obtain similar effects on T. brucei. This demonstrates the antitumor efficacy of these extracts as well as their ability to dampen viability and proliferation of T. brucei, suggesting a common mechanism of action on highly proliferative cells, most probably by targeting cell metabolism.


Unraveling the gut microbiome of the long-lived naked mole-rat.

  • Tewodros Debebe‎ et al.
  • Scientific reports‎
  • 2017‎

The naked mole-rat (Heterocephalus glaber) is a subterranean mouse-sized African mammal that shows astonishingly few age-related degenerative changes and seems to not be affected by cancer. These features make this wild rodent an excellent model to study the biology of healthy aging and longevity. Here we characterize for the first time the intestinal microbial ecosystem of the naked mole-rat in comparison to humans and other mammals, highlighting peculiarities related to the specific living environment, such as the enrichment in bacteria able to utilize soil sulfate as a terminal electron acceptor to sustain an anaerobic oxidative metabolism. Interestingly, some compositional gut microbiota peculiarities were also shared with human gut microbial ecosystems of centenarians and Hadza hunter-gatherers, considered as models of a healthy gut microbiome and of a homeostatic and highly adaptive gut microbiota-host relationship, respectively. In addition, we found an enrichment of short-chain fatty acids and carbohydrate degradation products in naked mole-rat compared to human samples. These data confirm the importance of the gut microbial ecosystem as an adaptive partner for the mammalian biology and health, independently of the host phylogeny.


Verification and characterization of an alternative low density lipoprotein receptor-related protein 1 splice variant.

  • Marlen Kolb‎ et al.
  • PloS one‎
  • 2017‎

Low density lipoprotein (LDL) receptor-related protein 1 (LRP1) is a ubiquitously expressed multi-ligand endocytosis receptor implicated in a wide range of signalling, among others in tumour biology. Tumour-associated genomic mutations of the LRP1 gene are described, but nothing is known about cancer-associated expression of LRP1 splice variants Therefore, the focus of this study was on an annotated truncated LRP1 splice variant (BC072015.1; NCBI GenBank), referred to as smLRP1, which was initially identified in prostate and lung carcinoma.


Glycerophosphoglycerol, Beta-alanine, and pantothenic Acid as metabolic companions of glycolytic activity and cell migration in breast cancer cell lines.

  • Antje Hutschenreuther‎ et al.
  • Metabolites‎
  • 2013‎

In cancer research, cell lines are used to explore the molecular basis of the disease as a substitute to tissue biopsies. Breast cancer in particular is a very heterogeneous type of cancer, and different subgroups of cell lines have been established according to their genomic profiles and tumor characteristics. We applied GCMS metabolite profiling to five selected breast cancer cell lines and found this heterogeneity reflected on the metabolite level as well. Metabolite profiles of MCF-7 cells belonging to the luminal gene cluster proved to be more different from those of the basal A cell line JIMT-1 and the basal B cell lines MDA-MB-231, MDA-MB-435, and MDA-MB-436 with only slight differences in the intracellular metabolite pattern. Lactate release into the cultivation medium as an indicator of glycolytic activity was correlated to the metabolite profiles and physiological characteristics of each cell line. In conclusion, pantothenic acid, beta-alanine and glycerophosphoglycerol appeared to be related to the glycolytic activity designated through high lactate release. Other physiological parameters coinciding with glycolytic activity were high glyoxalase 1 (Glo1) and lactate dehydrogenase (LDH) enzyme activity as well as cell migration as an additional important characteristic contributing to the aggressiveness of tumor cells. Metabolite profiles of the cell lines are comparatively discussed with respect to known biomarkers of cancer progression.


The anti-tumorigenic activity of A2M-A lesson from the naked mole-rat.

  • Susanne Kurz‎ et al.
  • PloS one‎
  • 2017‎

Cancer resistance is a major cause for longevity of the naked mole-rat. Recent liver transcriptome analysis in this animal compared to wild-derived mice revealed higher expression of alpha2-macroglobulin (A2M) and cell adhesion molecules, which contribute to the naked mole-rat's cancer resistance. Notably, A2M is known to dramatically decrease with age in humans. We hypothesize that this might facilitate tumour development. Here we found that A2M modulates tumour cell adhesion, migration and growth by inhibition of tumour promoting signalling pathways, e.g. PI3K / AKT, SMAD and up-regulated PTEN via down-regulation of miR-21, in vitro and in tumour xenografts. A2M increases the expression of CD29 and CD44 but did not evoke EMT. Transcriptome analysis of A2M-treated tumour cells, xenografts and mouse liver demonstrated a multifaceted regulation of tumour promoting signalling pathways indicating a less tumorigenic environment mediated by A2M. By virtue of these multiple actions the naturally occurring A2M has strong potential as a novel therapeutic agent.


Expression of purinergic receptors in the hypothalamus of the rat is modified by reduced food availability.

  • Bertolt Seidel‎ et al.
  • Brain research‎
  • 2006‎

ATP-sensitive P2 receptors are suggested to play an important role in the cerebral signal transduction. We examined the expression of the P2Y1 receptor and the possibly downstream-related neuronal nitric oxide synthase (nNOS) in the hypothalamus of rats food-restricted for 3 or 10 days and rats refed after a restriction of 10 days. The restriction caused a reduction of the body weight and plasma triacylglyceride, an increase of non-esterified fatty acid levels correlating with a decrease of leptin levels and an enhancement of plasma corticosterone. All changes returned to basal levels after refeeding. The restriction induced an enhanced intake within 30 min after food presentation and a reduction in the latency. Interestingly, the latter was not abolished by refeeding. The daily food intake induced by refeeding was enhanced at the first day only. The expression of hypothalamic P2Y1 receptor/nNOS mRNA and protein and of leptin receptor mRNA were enhanced after restricted feeding. These changes were abolished after 3 days of refeeding. Immunofluorescence studies indicated that P2Y1 receptor and nNOS immunoreactivities are present in the dorsomedial, ventromedial and lateral hypothalamus and in the nucleus arcuatus. P2Y1 receptor-positive cells were partially also nNOS-positive. The P2Y1 receptor labeling was restricted to cell bodies of obviously non-glial cells, whereas nNOS labeling could be detected also at cellular processes of these cells. In the nucleus arcuatus, astrocytes were identified, expressing P2Y1 receptors at cell bodies and cellular processes. The data suggest that restricted feeding may enhance the sensitivity of the hypothalamus to extracellular ADP/ATP by regulation of the expression of P2Y1 receptors and possibly of their signal transduction pathway via nitric oxide production.


Molecular sensing of mechano- and ligand-dependent adhesion GPCR dissociation.

  • Nicole Scholz‎ et al.
  • Nature‎
  • 2023‎

Adhesion G-protein-coupled receptors (aGPCRs) bear notable similarity to Notch proteins1, a class of surface receptors poised for mechano-proteolytic activation2-4, including an evolutionarily conserved mechanism of cleavage5-8. However, so far there is no unifying explanation for why aGPCRs are autoproteolytically processed. Here we introduce a genetically encoded sensor system to detect the dissociation events of aGPCR heterodimers into their constituent N-terminal and C-terminal fragments (NTFs and CTFs, respectively). An NTF release sensor (NRS) of the neural latrophilin-type aGPCR Cirl (ADGRL)9-11, from Drosophila melanogaster, is stimulated by mechanical force. Cirl-NRS activation indicates that receptor dissociation occurs in neurons and cortex glial cells. The release of NTFs from cortex glial cells requires trans-interaction between Cirl and its ligand, the Toll-like receptor Tollo (Toll-8)12, on neural progenitor cells, whereas expressing Cirl and Tollo in cis suppresses dissociation of the aGPCR. This interaction is necessary to control the size of the neuroblast pool in the central nervous system. We conclude that receptor autoproteolysis enables non-cell-autonomous activities of aGPCRs, and that the dissociation of aGPCRs is controlled by their ligand expression profile and by mechanical force. The NRS system will be helpful in elucidating the physiological roles and signal modulators of aGPCRs, which constitute a large untapped reservoir of drug targets for cardiovascular, immune, neuropsychiatric and neoplastic diseases13.


Analysis of cultivable microbiota and diet intake pattern of the long-lived naked mole-rat.

  • Tewodros Debebe‎ et al.
  • Gut pathogens‎
  • 2016‎

A variety of microbial communities exist throughout the human and animal body. Genetics, environmental factors and long-term dietary habit contribute to shaping the composition of the gut microbiota. For this reason the study of the gut microbiota of a mammal exhibiting an extraordinary life span is of great importance. The naked mole-rat (Heterocephalus glaber) is a eusocial mammal known for its longevity and cancer resistance.


Modulation of GLO1 Expression Affects Malignant Properties of Cells.

  • Antje Hutschenreuther‎ et al.
  • International journal of molecular sciences‎
  • 2016‎

The energy metabolism of most tumor cells relies on aerobic glycolysis (Warburg effect) characterized by an increased glycolytic flux that is accompanied by the increased formation of the cytotoxic metabolite methylglyoxal (MGO). Consequently, the rate of detoxification of this reactive glycolytic byproduct needs to be increased in order to prevent deleterious effects to the cells. This is brought about by an increased expression of glyoxalase 1 (GLO1) that is the rate-limiting enzyme of the MGO-detoxifying glyoxalase system. Here, we overexpressed GLO1 in HEK 293 cells and silenced it in MCF-7 cells using shRNA. Tumor-related properties of wild type and transformed cells were compared and key glycolytic enzyme activities assessed. Furthermore, the cells were subjected to hypoxic conditions to analyze the impact on cell proliferation and enzyme activities. Our results demonstrate that knockdown of GLO1 in the cancer cells significantly reduced tumor-associated properties such as migration and proliferation, whereas no functional alterations where found by overexpression of GLO1 in HEK 293 cells. In contrast, hypoxia caused inhibition of cell growth of all cells except of those overexpressing GLO1. Altogether, we conclude that GLO1 on one hand is crucial to maintaining tumor characteristics of malignant cells, and, on the other hand, supports malignant transformation of cells in a hypoxic environment when overexpressed.


Ethyl Pyruvate Combats Human Leukemia Cells but Spares Normal Blood Cells.

  • Gerd Birkenmeier‎ et al.
  • PloS one‎
  • 2016‎

Ethyl pyruvate, a known ROS scavenger and anti-inflammatory drug was found to combat leukemia cells. Tumor cell killing was achieved by concerted action of necrosis/apoptosis induction, ATP depletion, and inhibition of glycolytic and para-glycolytic enzymes. Ethyl lactate was less harmful to leukemia cells but was found to arrest cell cycle in the G0/G1 phase. Both, ethyl pyruvate and ethyl lactate were identified as new inhibitors of GSK-3β. Despite the strong effect of ethyl pyruvate on leukemia cells, human cognate blood cells were only marginally affected. The data were compiled by immune blotting, flow cytometry, enzyme activity assay and gene array analysis. Our results inform new mechanisms of ethyl pyruvate-induced cell death, offering thereby a new treatment regime with a high therapeutic window for leukemic tumors.


Posttranslational modification of human glyoxalase 1 indicates redox-dependent regulation.

  • Gerd Birkenmeier‎ et al.
  • PloS one‎
  • 2010‎

Glyoxalase 1 (Glo1) and glyoxalase 2 (Glo2) are ubiquitously expressed cytosolic enzymes that catalyze the conversion of toxic alpha-oxo-aldehydes into the corresponding alpha-hydroxy acids using L-glutathione (GSH) as a cofactor. Human Glo1 exists in various isoforms; however, the nature of its modifications and their distinct functional assignment is mostly unknown.


Oligomeric beta-amyloid(1-42) induces the expression of Alzheimer disease-relevant proteins in cholinergic SN56.B5.G4 cells as revealed by proteomic analysis.

  • Sabrina Joerchel‎ et al.
  • International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience‎
  • 2008‎

Alzheimer's disease (AD) is characterized by cholinergic dysfunction and progressive basal forebrain cell loss which has been hypothesized to be associated with extensive accumulation of beta-amyloid (Abeta). To reveal whether oligomeric Abeta displays a particular toxicity for cholinergic neurons, the cholinergic cell line SN56.B5.G4 (SN56) was used as a model. Recently performed microarray analyses demonstrated that genes affected by exposure of SN56 cells with 50 microM oligomeric Abeta(1-42) for 24 h were involved in protein modification and degradation [Heinitz, K., Beck, M., Schliebs, R., Perez-Polo, J.R., 2006. Toxicity mediated by soluble oligomers of beta-amyloid(1-42) on cholinergic SN56.B5.G4 cells. J. Neurochem. 98, 1930-1945]. Using a proteomic approach, we compared the levels of proteins and specially of phosphorylated proteins in cytosolic fractions of cell lysates from cholinergic SN56 cells exposed to 50 microM Abeta(1-42) for 24h to those in control incubations. We show here that the levels of calreticulin, and mitogen-activated protein kinase (MAPK) kinase 6c were up-regulated in cholinergic SN56 cells exposed to Abeta(1-42), while gamma-actin appeared down-regulated. Abeta(1-42) exposure of cholinergic SN56 cells led to decreased phosphorylation of phosphoproteins, such as the Rho GDP dissociation inhibitor, the ubiquitin carboxyl terminal hydrolase-1, and the tubulin alpha-chain isotype Malpha6, as compared to untreated control lysates. The proteins identified have also been reported to be affected in brains of AD patients, suggesting a potential role of Abeta in influencing the integrity and functioning of the proteome in AD.


Functional diversity of PFKFB3 splice variants in glioblastomas.

  • Ulli Heydasch‎ et al.
  • PloS one‎
  • 2021‎

Tumor cells tend to metabolize glucose through aerobic glycolysis instead of oxidative phosphorylation in mitochondria. One of the rate limiting enzymes of glycolysis is 6-phosphofructo-1-kinase, which is allosterically activated by fructose 2,6-bisphosphate which in turn is produced by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2 or PFKFB). Mounting evidence suggests that cancerous tissues overexpress the PFKFB isoenzyme, PFKFB3, being causing enhanced proliferation of cancer cells. Initially, six PFKFB3 splice variants with different C-termini have been documented in humans. More recently, additional splice variants with varying N-termini were discovered the functions of which are to be uncovered. Glioblastoma is one of the deadliest forms of brain tumors. Up to now, the role of PFKFB3 splice variants in the progression and prognosis of glioblastomas is only partially understood. In this study, we first re-categorized the PFKFB3 splice variant repertoire to simplify the denomination. We investigated the impact of increased and decreased levels of PFKFB3-4 (former UBI2K4) and PFKFB3-5 (former variant 5) on the viability and proliferation rate of glioblastoma U87 and HEK-293 cells. The simultaneous knock-down of PFKFB3-4 and PFKFB3-5 led to a decrease in viability and proliferation of U87 and HEK-293 cells as well as a reduction in HEK-293 cell colony formation. Overexpression of PFKFB3-4 but not PFKFB3-5 resulted in increased cell viability and proliferation. This finding contrasts with the common notion that overexpression of PFKFB3 enhances tumor growth, but instead suggests splice variant-specific effects of PFKFB3, apparently with opposing effects on cell behaviour. Strikingly, in line with this result, we found that in human IDH-wildtype glioblastomas, the PFKFB3-4 to PFKFB3-5 ratio was significantly shifted towards PFKFB3-4 when compared to control brain samples. Our findings indicate that the expression level of distinct PFKFB3 splice variants impinges on tumorigenic properties of glioblastomas and that splice pattern may be of important diagnostic value for glioblastoma.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: