Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 301 papers

Identifying amyloid pathology-related cerebrospinal fluid biomarkers for Alzheimer's disease in a multicohort study.

  • Yuk Yee Leung‎ et al.
  • Alzheimer's & dementia (Amsterdam, Netherlands)‎
  • 2015‎

The dynamic range of cerebrospinal fluid (CSF) amyloid β (Aβ1-42) measurement does not parallel to cognitive changes in Alzheimer's disease (AD) and cognitively normal (CN) subjects across different studies. Therefore, identifying novel proteins to characterize symptomatic AD samples is important.


Regulatory consequences of neuronal ELAV-like protein binding to coding and non-coding RNAs in human brain.

  • Claudia Scheckel‎ et al.
  • eLife‎
  • 2016‎

Neuronal ELAV-like (nELAVL) RNA binding proteins have been linked to numerous neurological disorders. We performed crosslinking-immunoprecipitation and RNAseq on human brain, and identified nELAVL binding sites on 8681 transcripts. Using knockout mice and RNAi in human neuroblastoma cells, we showed that nELAVL intronic and 3' UTR binding regulates human RNA splicing and abundance. We validated hundreds of nELAVL targets among which were important neuronal and disease-associated transcripts, including Alzheimer's disease (AD) transcripts. We therefore investigated RNA regulation in AD brain, and observed differential splicing of 150 transcripts, which in some cases correlated with differential nELAVL binding. Unexpectedly, the most significant change of nELAVL binding was evident on non-coding Y RNAs. nELAVL/Y RNA complexes were specifically remodeled in AD and after acute UV stress in neuroblastoma cells. We propose that the increased nELAVL/Y RNA association during stress may lead to nELAVL sequestration, redistribution of nELAVL target binding, and altered neuronal RNA splicing.


Activation of HIPK2 Promotes ER Stress-Mediated Neurodegeneration in Amyotrophic Lateral Sclerosis.

  • Sebum Lee‎ et al.
  • Neuron‎
  • 2016‎

Persistent accumulation of misfolded proteins causes endoplasmic reticulum (ER) stress, a prominent feature in many neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). Here we report the identification of homeodomain interacting protein kinase 2 (HIPK2) as the essential link that promotes ER-stress-induced cell death via the IRE1α-ASK1-JNK pathway. ER stress, induced by tunicamycin or SOD1(G93A), activates HIPK2 by phosphorylating highly conserved serine and threonine residues (S359/T360) within the activation loop of the HIPK2 kinase domain. In SOD1(G93A) mice, loss of HIPK2 delays disease onset, reduces cell death in spinal motor neurons, mitigates glial pathology, and improves survival. Remarkably, HIPK2 activation positively correlates with TDP-43 proteinopathy in NEFH-tTA/tetO-hTDP-43ΔNLS mice, sporadic ALS and C9ORF72 ALS, and blocking HIPK2 kinase activity protects motor neurons from TDP-43 cytotoxicity. These results reveal a previously unrecognized role of HIPK2 activation in ER-stress-mediated neurodegeneration and its potential role as a biomarker and therapeutic target for ALS. VIDEO ABSTRACT.


Gene-wise association of variants in four lysosomal storage disorder genes in neuropathologically confirmed Lewy body disease.

  • Lorraine N Clark‎ et al.
  • PloS one‎
  • 2015‎

Variants in GBA are associated with Lewy Body (LB) pathology. We investigated whether variants in other lysosomal storage disorder (LSD) genes also contribute to disease pathogenesis.


Variants associated with Gaucher disease in multiple system atrophy.

  • Jun Mitsui‎ et al.
  • Annals of clinical and translational neurology‎
  • 2015‎

Glucocerebrosidase gene (GBA) variants that cause Gaucher disease are associated with Parkinson disease (PD) and dementia with Lewy bodies (DLB). To investigate the role of GBA variants in multiple system atrophy (MSA), we analyzed GBA variants in a large case-control series.


Ultrastructural analyses in the hippocampus CA1 field in Shank3-deficient mice.

  • Neha Uppal‎ et al.
  • Molecular autism‎
  • 2015‎

The genetics of autism spectrum disorder (hereafter referred to as "autism") are rapidly unfolding, with a significant increase in the identification of genes implicated in the disorder. Many of these genes are part of a complex landscape of genetic variants that are thought to act together to cause the behavioral phenotype associated with autism. One of the few single-locus causes of autism involves a mutation in the SH3 and multiple ankyrin repeat domains 3 (SHANK3) gene. Previous electrophysiological studies in mice with Shank3 mutations demonstrated impairment in synaptic long-term potentiation, suggesting a potential disruption at the synapse.


Rare coding mutations identified by sequencing of Alzheimer disease genome-wide association studies loci.

  • Badri N Vardarajan‎ et al.
  • Annals of neurology‎
  • 2015‎

To detect rare coding variants underlying loci detected by genome-wide association studies (GWAS) of late onset Alzheimer disease (LOAD).


Partial volume correction in quantitative amyloid imaging.

  • Yi Su‎ et al.
  • NeuroImage‎
  • 2015‎

Amyloid imaging is a valuable tool for research and diagnosis in dementing disorders. As positron emission tomography (PET) scanners have limited spatial resolution, measured signals are distorted by partial volume effects. Various techniques have been proposed for correcting partial volume effects, but there is no consensus as to whether these techniques are necessary in amyloid imaging, and, if so, how they should be implemented. We evaluated a two-component partial volume correction technique and a regional spread function technique using both simulated and human Pittsburgh compound B (PiB) PET imaging data. Both correction techniques compensated for partial volume effects and yielded improved detection of subtle changes in PiB retention. However, the regional spread function technique was more accurate in application to simulated data. Because PiB retention estimates depend on the correction technique, standardization is necessary to compare results across groups. Partial volume correction has sometimes been avoided because it increases the sensitivity to inaccuracy in image registration and segmentation. However, our results indicate that appropriate PVC may enhance our ability to detect changes in amyloid deposition.


Synaptic, transcriptional and chromatin genes disrupted in autism.

  • Silvia De Rubeis‎ et al.
  • Nature‎
  • 2014‎

The genetic architecture of autism spectrum disorder involves the interplay of common and rare variants and their impact on hundreds of genes. Using exome sequencing, here we show that analysis of rare coding variation in 3,871 autism cases and 9,937 ancestry-matched or parental controls implicates 22 autosomal genes at a false discovery rate (FDR) < 0.05, plus a set of 107 autosomal genes strongly enriched for those likely to affect risk (FDR < 0.30). These 107 genes, which show unusual evolutionary constraint against mutations, incur de novo loss-of-function mutations in over 5% of autistic subjects. Many of the genes implicated encode proteins for synaptic formation, transcriptional regulation and chromatin-remodelling pathways. These include voltage-gated ion channels regulating the propagation of action potentials, pacemaking and excitability-transcription coupling, as well as histone-modifying enzymes and chromatin remodellers-most prominently those that mediate post-translational lysine methylation/demethylation modifications of histones.


Phenotypic and functional analysis of SHANK3 stop mutations identified in individuals with ASD and/or ID.

  • Daniela M Cochoy‎ et al.
  • Molecular autism‎
  • 2015‎

SHANK proteins are crucial for the formation and plasticity of excitatory synapses. Although mutations in all three SHANK genes are associated with autism spectrum disorder (ASD), SHANK3 appears to be the major ASD gene with a prevalence of approximately 0.5% for SHANK3 mutations in ASD, with higher rates in individuals with ASD and intellectual disability (ID). Interestingly, the most relevant mutations are typically de novo and often are frameshift or nonsense mutations resulting in a premature stop and a truncation of SHANK3 protein.


Patient-derived frontotemporal lobar degeneration brain extracts induce formation and spreading of TDP-43 pathology in vivo.

  • Sílvia Porta‎ et al.
  • Nature communications‎
  • 2018‎

The stereotypical distribution of TAR DNA-binding 43 protein (TDP-43) aggregates in frontotemporal lobar degeneration (FTLD-TDP) suggests that pathological TDP-43 spreads throughout the brain via cell-to-cell transmission and correlates with disease progression, but no in vivo experimental data support this hypothesis. We first develop a doxycycline-inducible cell line expressing GFP-tagged cytoplasmic TDP-43 protein (iGFP-NLSm) as a cell-based system to screen and identify seeding activity of human brain-derived pathological TDP-43 isolated from sporadic FTLD-TDP and familial cases with Granulin (FTLD-TDP-GRN) or C9orf72 repeat expansion mutations (FTLD-TDP-C9+). We demonstrate that intracerebral injections of biologically active pathogenic FTLD-TDP seeds into transgenic mice expressing cytoplasmic human TDP-43 (lines CamKIIa-hTDP-43NLSm, rNLS8, and CamKIIa-208) and non-transgenic mice led to the induction of de-novo TDP-43 pathology. Moreover, TDP-43 pathology progressively spreads throughout the brain in a time-dependent manner via the neuroanatomic connectome. Our study suggests that the progression of FTLD-TDP reflects the templated cell-to-cell transneuronal spread of pathological TDP-43.


Drosophila Ref1/ALYREF regulates transcription and toxicity associated with ALS/FTD disease etiologies.

  • Amit Berson‎ et al.
  • Acta neuropathologica communications‎
  • 2019‎

RNA-binding proteins (RBPs) are associated with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), but the underlying disease mechanisms remain unclear. In an unbiased screen in Drosophila for RBPs that genetically interact with TDP-43, we found that downregulation of the mRNA export factor Ref1 (fly orthologue to human ALYREF) mitigated TDP-43 induced toxicity. Further, Ref1 depletion also reduced toxicity caused by expression of the C9orf72 GGGGCC repeat expansion. Ref1 knockdown lowered the mRNA levels for these related disease genes and reduced the encoded proteins with no effect on a wild-type Tau disease transgene or a control transgene. Interestingly, expression of TDP-43 or the GGGGCC repeat expansion increased endogenous Ref1 mRNA levels in the fly brain. Further, the human orthologue ALYREF was upregulated by immunohistochemistry in ALS motor neurons, with the strongest upregulation occurring in ALS cases harboring the GGGGCC expansion in C9orf72. These data support ALYREF as a contributor to ALS/FTD and highlight its downregulation as a potential therapeutic target that may affect co-existing disease etiologies.


FUN-LDA: A Latent Dirichlet Allocation Model for Predicting Tissue-Specific Functional Effects of Noncoding Variation: Methods and Applications.

  • Daniel Backenroth‎ et al.
  • American journal of human genetics‎
  • 2018‎

We describe a method based on a latent Dirichlet allocation model for predicting functional effects of noncoding genetic variants in a cell-type- and/or tissue-specific way (FUN-LDA). Using this unsupervised approach, we predict tissue-specific functional effects for every position in the human genome in 127 different tissues and cell types. We demonstrate the usefulness of our predictions by using several validation experiments. Using eQTL data from several sources, including the GTEx project, Geuvadis project, and TwinsUK cohort, we show that eQTLs in specific tissues tend to be most enriched among the predicted functional variants in relevant tissues in Roadmap. We further show how these integrated functional scores can be used for (1) deriving the most likely cell or tissue type causally implicated for a complex trait by using summary statistics from genome-wide association studies and (2) estimating a tissue-based correlation matrix of various complex traits. We found large enrichment of heritability in functional components of relevant tissues for various complex traits, and FUN-LDA yielded higher enrichment estimates than existing methods. Finally, using experimentally validated functional variants from the literature and variants possibly implicated in disease by previous studies, we rigorously compare FUN-LDA with state-of-the-art functional annotation methods and show that FUN-LDA has better prediction accuracy and higher resolution than these methods. In particular, our results suggest that tissue- and cell-type-specific functional prediction methods tend to have substantially better prediction accuracy than organism-level prediction methods. Scores for each position in the human genome and for each ENCODE and Roadmap tissue are available online (see Web Resources).


De Novo Sequence and Copy Number Variants Are Strongly Associated with Tourette Disorder and Implicate Cell Polarity in Pathogenesis.

  • Sheng Wang‎ et al.
  • Cell reports‎
  • 2018‎

We previously established the contribution of de novo damaging sequence variants to Tourette disorder (TD) through whole-exome sequencing of 511 trios. Here, we sequence an additional 291 TD trios and analyze the combined set of 802 trios. We observe an overrepresentation of de novo damaging variants in simplex, but not multiplex, families; we identify a high-confidence TD risk gene, CELSR3 (cadherin EGF LAG seven-pass G-type receptor 3); we find that the genes mutated in TD patients are enriched for those related to cell polarity, suggesting a common pathway underlying pathobiology; and we confirm a statistically significant excess of de novo copy number variants in TD. Finally, we identify significant overlap of de novo sequence variants between TD and obsessive-compulsive disorder and de novo copy number variants between TD and autism spectrum disorder, consistent with shared genetic risk.


A C6orf10/LOC101929163 locus is associated with age of onset in C9orf72 carriers.

  • Ming Zhang‎ et al.
  • Brain : a journal of neurology‎
  • 2018‎

The G4C2-repeat expansion in C9orf72 is the most common known cause of amyotrophic lateral sclerosis and frontotemporal dementia. The high phenotypic heterogeneity of C9orf72 patients includes a wide range in age of onset, modifiers of which are largely unknown. Age of onset could be influenced by environmental and genetic factors both of which may trigger DNA methylation changes at CpG sites. We tested the hypothesis that age of onset in C9orf72 patients is associated with some common single nucleotide polymorphisms causing a gain or loss of CpG sites and thus resulting in DNA methylation alterations. Combined analyses of epigenetic and genetic data have the advantage of detecting functional variants with reduced likelihood of false negative results due to excessive correction for multiple testing in genome-wide association studies. First, we estimated the association between age of onset in C9orf72 patients (n = 46) and the DNA methylation levels at all 7603 CpG sites available on the 450 k BeadChip that are mapped to common single nucleotide polymorphisms. This was followed by a genetic association study of the discovery (n = 144) and replication (n = 187) C9orf72 cohorts. We found that age of onset was reproducibly associated with polymorphisms within a 124.7 kb linkage disequilibrium block tagged by top-significant variation, rs9357140, and containing two overlapping genes (LOC101929163 and C6orf10). A meta-analysis of all 331 C9orf72 carriers revealed that every A-allele of rs9357140 reduced hazard by 30% (P = 0.0002); and the median age of onset in AA-carriers was 6 years later than GG-carriers. In addition, we investigated a cohort of C9orf72 negative patients (n = 2634) affected by frontotemporal dementia and/or amyotrophic lateral sclerosis; and also found that the AA-genotype of rs9357140 was associated with a later age of onset (adjusted P = 0.007 for recessive model). Phenotype analyses detected significant association only in the largest subgroup of patients with frontotemporal dementia (n = 2142, adjusted P = 0.01 for recessive model). Gene expression studies of frontal cortex tissues from 25 autopsy cases affected by amyotrophic lateral sclerosis revealed that the G-allele of rs9357140 is associated with increased brain expression of LOC101929163 (a non-coding RNA) and HLA-DRB1 (involved in initiating immune responses), while the A-allele is associated with their reduced expression. Our findings suggest that carriers of the rs9357140 GG-genotype (linked to an earlier age of onset) might be more prone to be in a pro-inflammatory state (e.g. by microglia) than AA-carriers. Further, investigating the functional links within the C6orf10/LOC101929163/HLA-DRB1 pathway will be critical to better define age-dependent pathogenesis of frontotemporal dementia and amyotrophic lateral sclerosis.


Identification of rare de novo epigenetic variations in congenital disorders.

  • Mafalda Barbosa‎ et al.
  • Nature communications‎
  • 2018‎

Certain human traits such as neurodevelopmental disorders (NDs) and congenital anomalies (CAs) are believed to be primarily genetic in origin. However, even after whole-genome sequencing (WGS), a substantial fraction of such disorders remain unexplained. We hypothesize that some cases of ND-CA are caused by aberrant DNA methylation leading to dysregulated genome function. Comparing DNA methylation profiles from 489 individuals with ND-CAs against 1534 controls, we identify epivariations as a frequent occurrence in the human genome. De novo epivariations are significantly enriched in cases, while RNAseq analysis shows that epivariations often have an impact on gene expression comparable to loss-of-function mutations. Additionally, we detect and replicate an enrichment of rare sequence mutations overlapping CTCF binding sites close to epivariations, providing a rationale for interpreting non-coding variation. We propose that epivariations contribute to the pathogenesis of some patients with unexplained ND-CAs, and as such likely have diagnostic relevance.


Gene expression in cord blood links genetic risk for neurodevelopmental disorders with maternal psychological distress and adverse childhood outcomes.

  • Michael S Breen‎ et al.
  • Brain, behavior, and immunity‎
  • 2018‎

Prenatal exposure to maternal stress and depression has been identified as a risk factor for adverse behavioral and neurodevelopmental outcomes in early childhood. However, the molecular mechanisms through which maternal psychopathology shapes offspring development remain poorly understood. We applied transcriptome-wide screens to 149 umbilical cord blood samples from neonates born to mothers with posttraumatic stress disorder (PTSD; n = 20), depression (n = 31) and PTSD with comorbid depression (n = 13), compared to carefully matched trauma exposed controls (n = 23) and healthy mothers (n = 62). Analyses by maternal diagnoses revealed a clear pattern of gene expression signatures distinguishing neonates born to mothers with a history of psychopathology from those without. Co-expression network analysis identified distinct gene expression perturbations across maternal diagnoses, including two depression-related modules implicated in axon-guidance and mRNA stability, as well as two PTSD-related modules implicated in TNF signaling and cellular response to stress. Notably, these disease-related modules were enriched with brain-expressed genes and genetic risk loci for autism spectrum disorder and schizophrenia, which may imply a causal role for impaired developmental outcomes. These molecular alterations preceded changes in clinical measures at twenty-four months, including reductions in cognitive and socio-emotional outcomes in affected infants. Collectively, these findings indicate that prenatal exposure to maternal psychological distress induces neuronal, immunological and behavioral abnormalities in affected offspring and support the search for early biomarkers of exposures to adverse in utero environments and the classification of children at risk for impaired development.


Clinical Experience with Cerebrospinal Fluid Aβ42, Total and Phosphorylated Tau in the Evaluation of 1,016 Individuals for Suspected Dementia.

  • Leonardo Tariciotti‎ et al.
  • Journal of Alzheimer's disease : JAD‎
  • 2018‎

Elevated total tau (tTau), 181-phosphorylated phosphorylated tau (pTau), and low amyloid-β42 (Aβ42) in cerebrospinal fluid (CSF) represent a diagnostic biomarker for Alzheimer's disease (AD).


Epigenetic Biomarkers as Predictors and Correlates of Symptom Improvement Following Psychotherapy in Combat Veterans with PTSD.

  • Rachel Yehuda‎ et al.
  • Frontiers in psychiatry‎
  • 2013‎

Epigenetic alterations offer promise as diagnostic or prognostic markers, but it is not known whether these measures associate with, or predict, clinical state. These questions were addressed in a pilot study with combat veterans with PTSD to determine whether cytosine methylation in promoter regions of the glucocorticoid related NR3C1 and FKBP51 genes would predict or associate with treatment outcome. Veterans with PTSD received prolonged exposure (PE) psychotherapy, yielding responders (n = 8), defined by no longer meeting diagnostic criteria for PTSD, and non-responders (n = 8). Blood samples were obtained at pre-treatment, after 12 weeks of psychotherapy (post-treatment), and after a 3-month follow-up. Methylation was examined in DNA extracted from lymphocytes. Measures reflecting glucocorticoid receptor (GR) activity were also obtained (i.e., plasma and 24 h-urinary cortisol, plasma ACTH, lymphocyte lysozyme IC50-DEX, and plasma neuropeptide-Y). Methylation of the GR gene (NR3C1) exon 1F promoter assessed at pre-treatment predicted treatment outcome, but was not significantly altered in responders or non-responders at post-treatment or follow-up. In contrast, methylation of the FKBP5 gene (FKBP51) exon 1 promoter region did not predict treatment response, but decreased in association with recovery. In a subset, a corresponding group difference in FKBP5 gene expression was observed, with responders showing higher gene expression at post-treatment than non-responders. Endocrine markers were also associated with the epigenetic markers. These preliminary observations require replication and validation. However, the results support research indicating that some glucocorticoid related genes are subject to environmental regulation throughout life. Moreover, psychotherapy constitutes a form of "environmental regulation" that may alter epigenetic state. Finally, the results further suggest that different genes may be associated with prognosis and symptom state, respectively.


Convergence of genes and cellular pathways dysregulated in autism spectrum disorders.

  • Dalila Pinto‎ et al.
  • American journal of human genetics‎
  • 2014‎

Rare copy-number variation (CNV) is an important source of risk for autism spectrum disorders (ASDs). We analyzed 2,446 ASD-affected families and confirmed an excess of genic deletions and duplications in affected versus control groups (1.41-fold, p = 1.0 × 10(-5)) and an increase in affected subjects carrying exonic pathogenic CNVs overlapping known loci associated with dominant or X-linked ASD and intellectual disability (odds ratio = 12.62, p = 2.7 × 10(-15), ∼3% of ASD subjects). Pathogenic CNVs, often showing variable expressivity, included rare de novo and inherited events at 36 loci, implicating ASD-associated genes (CHD2, HDAC4, and GDI1) previously linked to other neurodevelopmental disorders, as well as other genes such as SETD5, MIR137, and HDAC9. Consistent with hypothesized gender-specific modulators, females with ASD were more likely to have highly penetrant CNVs (p = 0.017) and were also overrepresented among subjects with fragile X syndrome protein targets (p = 0.02). Genes affected by de novo CNVs and/or loss-of-function single-nucleotide variants converged on networks related to neuronal signaling and development, synapse function, and chromatin regulation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: