Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 155 papers

Abnormalities in osteoclastogenesis and decreased tumorigenesis in mice deficient for ovarian cancer G protein-coupled receptor 1.

  • Hui Li‎ et al.
  • PloS one‎
  • 2009‎

Ovarian cancer G protein-coupled receptor 1 (OGR1) has been shown to be a proton sensing receptor in vitro. We have shown that OGR1 functions as a tumor metastasis suppressor gene when it is over-expressed in human prostate cancer cells in vivo. To examine the physiological functions of OGR1, we generated conditional OGR1 deficient mice by homologous recombination. OGR1 deficient mice were viable and upon gross-inspection appeared normal. Consistent with in vitro studies showing that OGR1 is involved in osteoclastogenesis, reduced osteoclasts were detected in OGR1 deficient mice. A pH-dependent osteoclasts survival effect was also observed. However, overall abnormality in the bones of these animals was not observed. In addition, melanoma cell tumorigenesis was significantly inhibited in OGR1 deficient mice. OGR1 deficient mice in the mixed background produced significantly less peritoneal macrophages when stimulated with thioglycolate. These macrophages also showed altered extracellular signal-regulated kinases (ERK) activation and nitric oxide (NO) production in response to lipopolysaccharide. OGR1-dependent pH responses assessed by cAMP production and cell survival in macrophages or brown fat cells were not observed, presumably due to the presence of other proton sensing receptors in these cells. Our results indicate that OGR1's role in osteoclastogenesis is not strong enough to affect overall bone development and its role in tumorigenesis warrants further investigation. The mice generated can be potentially used for several disease models, including cancers or osteoclast-related diseases.


H3.3/H2A.Z double variant-containing nucleosomes mark 'nucleosome-free regions' of active promoters and other regulatory regions.

  • Chunyuan Jin‎ et al.
  • Nature genetics‎
  • 2009‎

To understand how chromatin structure is organized by different histone variants, we have measured the genome-wide distribution of nucleosome core particles (NCPs) containing the histone variants H3.3 and H2A.Z in human cells. We find that a special class of NCPs containing both variants is enriched at 'nucleosome-free regions' of active promoters, enhancers and insulator regions. We show that preparative methods used previously in studying nucleosome structure result in the loss of these unstable double-variant NCPs. It seems likely that this instability facilitates the access of transcription factors to promoters and other regulatory sites in vivo. Other combinations of variants have different distributions, consistent with distinct roles for histone variants in the modulation of gene expression.


Comparison of REST cistromes across human cell types reveals common and context-specific functions.

  • Shira Rockowitz‎ et al.
  • PLoS computational biology‎
  • 2014‎

Recent studies have shown that the transcriptional functions of REST are much broader than repressing neuronal genes in non-neuronal systems. Whether REST occupies similar chromatin regions in different cell types and how it interacts with other transcriptional regulators to execute its functions in a context-dependent manner has not been adequately investigated. We have applied ChIP-seq analysis to identify the REST cistrome in human CD4+ T cells and compared it with published data from 15 other cell types. We found that REST cistromes were distinct among cell types, with REST binding to several tumor suppressors specifically in cancer cells, whereas 7% of the REST peaks in non-neuronal cells were ubiquitously called and <25% were identified for ≥ 5 cell types. Nevertheless, using a quantitative metric directly comparing raw ChIP-seq signals, we found the majority (∼80%) was shared by ≥ 2 cell types. Integration with RNA-seq data showed that REST binding was generally correlated with low gene expression. Close examination revealed that multiple contexts were correlated with reduced expression of REST targets, e.g., the presence of a cognate RE1 motif and cellular specificity of REST binding. These contexts were shown to play a role in differential corepressor recruitment. Furthermore, transcriptional outcome was highly influenced by REST cofactors, e.g., SIN3 and EZH2 co-occupancy marked higher and lower expression of REST targets, respectively. Unexpectedly, the REST cistrome in differentiated neurons exhibited unique features not observed in non-neuronal cells, e.g., the lack of RE1 motifs and an association with active gene expression. Finally, our analysis demonstrated how REST could differentially regulate a transcription network constituted of miRNAs, REST complex and neuronal factors. Overall, our findings of contexts playing critical roles in REST occupancy and regulatory outcome provide insights into the molecular interactions underlying REST's diverse functions, and point to novel roles of REST in differentiated neurons.


MicroRNA-212 inhibits hepatocellular carcinoma cell proliferation and induces apoptosis by targeting FOXA1.

  • Huahua Tu‎ et al.
  • OncoTargets and therapy‎
  • 2015‎

MircroRNA-212 (miR-212) is proposed as a novel tumor-related miRNA and has been found to be significantly deregulated in human cancers. In this study, the miR-212 expression was found to be obviously downregulated in hepatocellular carcinoma (HCC) tissues as compared with adjacent nontumor tissues. Clinical association analysis indicated that low expression of miR-212 was prominently correlated with poor prognostic features of HCC, including high AFP level, large tumor size, high Edmondson-Steiner grading, and advanced tumor-node-metastasis tumor stage. Furthermore, the miR-212 expression was an independent prognostic marker for predicting both 5-year overall survival and disease-free survival of HCC patients. Our in vitro studies showed that upregulation of miR-212 inhibited cell proliferation and induced apoptosis in HepG2 cells. On the contrary, downregulation of miR-212 promoted cell proliferation and suppressed apoptosis in Huh7 cells. Interestingly, we found that upregulation of miR-212 decreased FOXA1 expression in HepG2 cells. Significantly, FOXA1 was identified as a direct target of miR-212 in HCC. FOXA1 was downregulated in HCC tissues as compared with noncancerous tissues. An inverse correlation between FOXA1 and miR-212 expression was observed in HCC tissues. Notably, FOXA1 knockdown inhibited cell proliferation and induced apoptosis in HepG2 cells. In conclusion, miR-212 is a potent prognostic marker and may suppress HCC tumor growth by inhibiting FOXA1 expression.


GFRα2 prompts cell growth and chemoresistance through down-regulating tumor suppressor gene PTEN via Mir-17-5p in pancreatic cancer.

  • Jiangning Gu‎ et al.
  • Cancer letters‎
  • 2016‎

Nerve growth factors and their receptors have received an increasing attention in certain cancers since they play an important role in regulating tumorigenesis, biological process and metastasis. Here we aimed at characterizing a new function of one of the subtypes of growth factor receptors (GFR), GFRα2, in pancreatic cancer. In this study, we showed that GFRα2 was up-regulated in pancreatic adenocarcinoma and was positively correlated with tumor size and perineural invasion, which indicated that it may be associated with cell growth and apoptosis. Mechanically, we discovered that high GFRα2 expression level leads to PTEN inactivation via enhancing Mir-17-5p level.


Genome-wide mapping of nucleosome occupancy, histone modifications, and gene expression using next-generation sequencing technology.

  • Gang Wei‎ et al.
  • Methods in enzymology‎
  • 2012‎

Gene transcription can be regulated through alteration of chromatin structure, such as changes in nucleosome positioning and histone-modification patterns. Recent development of techniques based on the next-generation sequencing technology has allowed high-resolution analysis of genome-wide distribution of these chromatin features. In this chapter, we describe in detail the protocols of ChIP-Seq and MNase-Seq, which have been developed to detect the genome-wide profiles of transcription factor binding, histone modifications, and nucleosome occupancy. We also describe RNA-Seq protocols used to map global gene expression profiles.


E-Configuration Improves Antioxidant and Cytoprotective Capacities of Resveratrols.

  • Jian Lin‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2018‎

The antioxidant and cytoprotective capacities of E-resveratrol and Z-resveratrol were compared using chemical and cellular assays. Chemical assays revealed that the two isomers were dose-dependently active in •O₂--scavenging, ferric reducing antioxidant power (FRAP), Cu2+-reducing antioxidant capacity (CUPRAC), 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide radical (PTIO•)-scavenging (pH 7.4 and pH 4.5), and 1,1-diphenyl-2-picryl-hydrazyl (DPPH•)-scavenging assays. The cellular assay indicated that the two isomers could also increase cell viabilities. However, quantitative analyses suggested that E-resveratrol exhibited stronger effects than Z-resveratrol in all chemical and cellular assays. Finally, the conformations of E-resveratrol and Z-resveratrol were analyzed. It can be concluded that both E-resveratrol and Z-resveratrol can promote redox-related pathways to exhibit antioxidant action and consequently protect bone marrow-derived mesenchymal stem cells (bmMSCs) from oxidative damage. These pathways include electron transfer (ET) and H⁺-transfer, and likely include hydrogen atom transfer (HAT). The E-configuration, however, improves antioxidant and cytoprotective capacities of resveratrols. The detrimental effect of the Z-configuration may be attributed to the non-planar preferential conformation, where two dihedral angles block the extension of the conjugative system.


Physicochemical properties of polysaccharides from Dendrobium officinale by fractional precipitation and their preliminary antioxidant and anti-HepG2 cells activities in vitro.

  • Shangping Xing‎ et al.
  • Chemistry Central journal‎
  • 2018‎

Dendrobium officinale as a precious traditional Chinese herb is widely used in medicines and health supplements. Thus the extraction, purification and biological activities of polysaccharides from the stem of Dendrobium officinale have significant meaning on theory and application value.


Structural Characterization of Polysaccharides from Dendrobium officinale and Their Effects on Apoptosis of HeLa Cell Line.

  • Wenxia Yu‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2018‎

Dendrobium officinale is a widely used medicinal plant in China with numerous bio-activities. However, the main structure and anti-tumor activity of the polysaccharides from this plant have not been investigated. In this study, we elucidated the main structure of polysaccharides purified with DEAE and Sephadex G-25 from Dendrobium officinale grown under different planting conditions. In addition, the anti-tumor activity was tested via MTT assays. The results showed that the polysaccharides of Dendrobium officinale grown under different conditions were almost the same, with slight differences in the branched chain; both polysaccharide fractions consisted of (1→4)-linked mannose and (1→4)-linked glucose, with an O-acetyl group in the mannose. After degradation, the polysaccharide fractions from wild plants showed significant anti-proliferation activity in HeLa cells. The fractions F1 and F3 induced apoptosis by up-regulating the expression of ERK, JNK, and p38. We concluded that polysaccharides from Dendrobium officinale planted in the wild exhibit significant anti-tumor effects only after being degraded to smaller molecular weight species. The planting mode is a significant factor in the pharmacological activity of Dendrobium officinale. We advise that the planting conditions for Dendrobium officinale should be changed.


Alternative polyadenylation dependent function of splicing factor SRSF3 contributes to cellular senescence.

  • Ting Shen‎ et al.
  • Aging‎
  • 2019‎

Down-regulated splicing factor SRSF3 is known to promote cellular senescence, an important biological process in preventing cancer and contributing to individual aging, via its alternative splicing dependent function in human cells. Here we discovered alternative polyadenylation (APA) dependent function of SRSF3 as a novel mechanism explaining SRSF3 downregulation induced cellular senescence. Knockdown of SRSF3 resulted in preference usage of proximal poly(A) sites and thus global shortening of 3' untranslated regions (3' UTRs) of mRNAs. SRSF3-depletion also induced senescence-related phenotypes in both human and mouse cells. These 3' UTR shortened genes were enriched in senescence-associated pathways. Shortened 3' UTRs tended to produce more proteins than the longer ones. Simulating the effects of 3' UTR shortening by overexpression of three candidate genes (PTEN, PIAS1 and DNMT3A) all led to senescence-associated phenotypes. Mechanistically, SRSF3 has higher binding density near proximal poly(A) site than distal one in 3' UTR shortened genes. Further, upregulation of PTEN by either ectopic overexpression or SRSF3-knockdown induction both led to reduced phosphorylation of AKT and ultimately senescence-associated phenotypes. We revealed for the first time that reduced SRSF3 expression could promote cellular senescence through its APA-dependent function, largely extending our mechanistic understanding in splicing factor regulated cellular senescence.


Differential stem cell aging kinetics in Hutchinson-Gilford progeria syndrome and Werner syndrome.

  • Zeming Wu‎ et al.
  • Protein & cell‎
  • 2018‎

Hutchinson-Gilford progeria syndrome (HGPS) and Werner syndrome (WS) are two of the best characterized human progeroid syndromes. HGPS is caused by a point mutation in lamin A (LMNA) gene, resulting in the production of a truncated protein product-progerin. WS is caused by mutations in WRN gene, encoding a loss-of-function RecQ DNA helicase. Here, by gene editing we created isogenic human embryonic stem cells (ESCs) with heterozygous (G608G/+) or homozygous (G608G/G608G) LMNA mutation and biallelic WRN knockout, for modeling HGPS and WS pathogenesis, respectively. While ESCs and endothelial cells (ECs) did not present any features of premature senescence, HGPS- and WS-mesenchymal stem cells (MSCs) showed aging-associated phenotypes with different kinetics. WS-MSCs had early-onset mild premature aging phenotypes while HGPS-MSCs exhibited late-onset acute premature aging characterisitcs. Taken together, our study compares and contrasts the distinct pathologies underpinning the two premature aging disorders, and provides reliable stem-cell based models to identify new therapeutic strategies for pathological and physiological aging.


Transcriptome Analysis Reveals genes involved in flavonoid biosynthesis and accumulation in Dendrobium catenatum From Different Locations.

  • Zhouxi Lei‎ et al.
  • Scientific reports‎
  • 2018‎

In this study, we applied transcriptome and UHPLC-MS technologies to investigate the flavonoids and their biosynthesis- and accumulation-related genes in Dendrobium catenatum from three different locations. Eight flavonoid glycosides were identified using standard references or previously isolated substances with MS data analysis. The total flavonoid contents were determined by reagents, and all the data were analyzed. In total, 23139 unigenes were obtained using the Dendrobium catenatum genome data. Of these, 10398 were annotated in the Gene Ontology (GO) database, 4203 were annotated in the KEGG database, and 10917 were annotated in the EuKaryotic Orthologous Groups (KOG) database. Thirty-one of the unigenes annotated by the KEGG database were involved in flavonoid pathways. The genes involved in bio-modification, accumulation, transportation and the regulation of the flavonoid bio-synthesis process were investigated. In conclusion, the flavonoids in Dendrobium catenatum from three different locations were different in quantitative and qualitative which may contribute to the establishment of quality control method for this herbal plant. These differences were determined by flavonoids biosynthesis process and they were concluded by sorting out the expression level of certain biosynthesis related genes.


Position-specific intron retention is mediated by the histone methyltransferase SDG725.

  • Gang Wei‎ et al.
  • BMC biology‎
  • 2018‎

Intron retention (IR), the most prevalent alternative splicing form in plants, plays a critical role in gene expression during plant development and stress response. However, the molecular mechanisms underlying IR regulation remain largely unknown.


Membrane-bound TNF mediates microtubule-targeting chemotherapeutics-induced cancer cytolysis via juxtacrine inter-cancer-cell death signaling.

  • Jing Zhang‎ et al.
  • Cell death and differentiation‎
  • 2020‎

Microtubule-targeting agents (MTAs) are a class of most widely used chemotherapeutics and their mechanism of action has long been assumed to be mitotic arrest of rapidly dividing tumor cells. In contrast to such notion, here we show-in many cancer cell types-MTAs function by triggering membrane TNF (memTNF)-mediated cancer-cell-to-cancer-cell killing, which differs greatly from other non-MTA cell-cycle-arresting agents. The killing is through programmed cell death (PCD), either in way of necroptosis when RIP3 kinase is expressed, or of apoptosis in its absence. Mechanistically, MTAs induce memTNF transcription via the JNK-cJun signaling pathway. With respect to chemotherapy regimens, our results establish that memTNF-mediated killing is significantly augmented by IAP antagonists (Smac mimetics) in a broad spectrum of cancer types, and with their effects most prominently manifested in patient-derived xenograft (PDX) models in which cell-cell contacts are highly reminiscent of human tumors. Therefore, our finding indicates that memTNF can serve as a marker for patient responsiveness, and Smac mimetics will be effective adjuvants for MTA chemotherapeutics. The present study reframes our fundamental biochemical understanding of how MTAs take advantage of the natural tight contact of tumor cells and utilize memTNF-mediated death signaling to induce the entire tumor regression.


An episomal vector-based CRISPR/Cas9 system for highly efficient gene knockout in human pluripotent stem cells.

  • Yifang Xie‎ et al.
  • Scientific reports‎
  • 2017‎

Human pluripotent stem cells (hPSCs) represent a unique opportunity for understanding the molecular mechanisms underlying complex traits and diseases. CRISPR/Cas9 is a powerful tool to introduce genetic mutations into the hPSCs for loss-of-function studies. Here, we developed an episomal vector-based CRISPR/Cas9 system, which we called epiCRISPR, for highly efficient gene knockout in hPSCs. The epiCRISPR system enables generation of up to 100% Insertion/Deletion (indel) rates. In addition, the epiCRISPR system enables efficient double-gene knockout and genomic deletion. To minimize off-target cleavage, we combined the episomal vector technology with double-nicking strategy and recent developed high fidelity Cas9. Thus the epiCRISPR system offers a highly efficient platform for genetic analysis in hPSCs.


MicroRNA-125a-3p is involved in early behavioral disorders in stroke-afflicted rats through the regulation of Cadm2.

  • Yuqing Liu‎ et al.
  • International journal of molecular medicine‎
  • 2017‎

Ischemic strokes carry a significant risk of mortality and recurrent vascular events. Recent studies suggest that changes in microRNAs (miRNAs or miRs) may affect the development of the stroke. However, few studies have investigated the role of miRNAs in behavioral disorder in early stroke. In the present study, animal models of middle cerebral artery occlusion (MCAO) are used, as well as a cell model of neurite outgrowth to further investigate the role of miRNAs in targeting synapse-associated proteins expression in early stroke. The authors used miRNA expression microarrays on RNA extracted from the cortex tissue samples from the rats of MCAO and control rats. Reverse transcription‑quantitative polymerase chain reaction was conducted to verify the candidate miRNAs discovered by microarray analysis. Data indicated that miR‑125a was significantly increased in the cortex of the model of MCAO, which were concomitant with that rats of MCAO at the same age displayed significant behavioral deficits. Bioinformatics analysis predicted the cell adhesion molecule 2 (Cadm2, mRNA) neurite outgrowth-associated protein is targeted by miR‑125a. Overexpression of miR‑125a reduced the level of Cadm2 expression in PC12 cell injury induced by free-serum. In contrast, inhibition of miR‑125a using miR‑125a inhibitors significantly resulted in higher levels of Cadm2 expression. In conclusion, miR‑125a is involved in the behavioral disorder of animal models of MCAO by regulation of Cadm2.


Independent manipulation of histone H3 modifications in individual nucleosomes reveals the contributions of sister histones to transcription.

  • Zhen Zhou‎ et al.
  • eLife‎
  • 2017‎

Histone tail modifications can greatly influence chromatin-associated processes. Asymmetrically modified nucleosomes exist in multiple cell types, but whether modifications on both sister histones contribute equally to chromatin dynamics remains elusive. Here, we devised a bivalent nucleosome system that allowed for the constitutive assembly of asymmetrically modified sister histone H3s in nucleosomes in Saccharomyces cerevisiae. The sister H3K36 methylations independently affected cryptic transcription in gene coding regions, whereas sister H3K79 methylation had cooperative effects on gene silencing near telomeres. H3K4 methylation on sister histones played an independent role in suppressing the recruitment of Gal4 activator to the GAL1 promoter and in inhibiting GAL1 transcription. Under starvation stress, sister H3K4 methylations acted cooperatively, independently or redundantly to regulate transcription. Thus, we provide a unique tool for comparing symmetrical and asymmetrical modifications of sister histone H3s in vivo.


Alternative Polyadenylation: Methods, Findings, and Impacts.

  • Wei Chen‎ et al.
  • Genomics, proteomics & bioinformatics‎
  • 2017‎

Alternative polyadenylation (APA), a phenomenon that RNA molecules with different 3' ends originate from distinct polyadenylation sites of a single gene, is emerging as a mechanism widely used to regulate gene expression. In the present review, we first summarized various methods prevalently adopted in APA study, mainly focused on the next-generation sequencing (NGS)-based techniques specially designed for APA identification, the related bioinformatics methods, and the strategies for APA study in single cells. Then we summarized the main findings and advances so far based on these methods, including the preferences of alternative polyA (pA) site, the biological processes involved, and the corresponding consequences. We especially categorized the APA changes discovered so far and discussed their potential functions under given conditions, along with the possible underlying molecular mechanisms. With more in-depth studies on extensive samples, more signatures and functions of APA will be revealed, and its diverse roles will gradually heave in sight.


Inhibition of post-trabeculectomy fibrosis via topically instilled antisense oligonucleotide complexes co-loaded with fluorouracil.

  • Kuan Jiang‎ et al.
  • Acta pharmaceutica Sinica. B‎
  • 2020‎

Trabeculectomy is the mainstay of surgical glaucoma treatment, while the success rate was unsatisfying due to postoperative scarring of the filtering blebs. Clinical countermeasures for scar prevention are intraoperative intervention or repeated subconjunctival injections. Herein, we designed a co-delivery system capable of transporting fluorouracil and anti-TGF-β2 oligonucleotide to synergistically inhibit fibroblast proliferation via topical instillation. This co-delivery system was built based on a cationic dendrimer core (PAMAM), which encapsulated fluorouracil within hydrophobic cavity and condensed oligonucleotide with surface amino groups, and was further modified with hyaluronic acid and cell-penetrating peptide penetratin. The co-delivery system was self-assembled into nanoscale complexes with increased cellular uptake and enabled efficient inhibition on proliferation of fibroblast cells. In vivo studies on rabbit trabeculectomy models further confirmed the anti-fibrosis efficiency of the complexes, which prolonged survival time of filtering blebs and maintained their height and extent during wound healing process, exhibiting an equivalent effect on scar prevention compared to intraoperative infiltration with fluorouracil. Qualitative observation by immunohistochemistry staining and quantitative analysis by Western blotting both suggested that TGF-β2 expression was inhibited by the co-delivery complexes. Our study provided a potential approach promising to guarantee success rate of trabeculectomy and prolong survival time of filtering blebs.


The anticoagulants rivaroxaban and low molecular weight heparin prevent PICC-related upper extremity venous thrombosis in cancer patients.

  • Shoutian Lv‎ et al.
  • Medicine‎
  • 2019‎

Peripherally inserted central catheter (PICC) is often applied in chemotherapy patients and commonly causes upper extremity venous thrombosis (UEVT), which should be prevented.To assess the preventive effects of the anticoagulants rivaroxaban and low molecular weight heparin (LMWH) on UEVT in patients receiving chemotherapy through PICCs.A total of 423 chemotherapy patients with continuous PICC use between January 2014 and June 2015 at the Oncology Department of Dongying People's Hospital were divided into 3 groups: rivaroxaban (10 mg/day, orally), LMWH (Enoxaparine, 4000 anti-Xa IU/day, subcutaneous injection), and control (no anticoagulant). UEVT incidence and other complications during PICC use were observed and recorded.The rivaroxaban, LMWH, and control groups included 138 (79 males; 54.9 ± 11.0 years), 144 (76 males; 56.0 ± 10.9 years), and 141 (71 males; 53.3 ± 10.9 years) patients, (P = .402 and P = .623 for age and sex respectively). There were no differences in cancer location (P = .628), PICC implantation site (P > .05), body mass index (BMI) (P = .434), blood pressure (all P > .05), blood lipids (5 laboratory parameters included, all P > .5), smoking (P = .138), history of lower limb venous thrombosis (P = .082), and 10 other associated comorbidities (all P > .5). Twenty-nine patients withdrew from the study (5 from the rivaroxaban, 12 from the LMWH, and 12 from the control groups, respectively), and 394 patients were analyzed. There were significant differences in the rivaroxaban group and the LMWH group compared to the control group (P = .010 and P = .009, respectively), but no significant difference was observed between the rivaroxaban group and the LMWH group (P = .743).Anticoagulants such as rivaroxaban and LMWH may reduce the incidence of PICC-related UEVT in patients receiving chemotherapy.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: