Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 13 papers out of 13 papers

Doxorubicin cardiomyopathy is ameliorated by acacetin via Sirt1-mediated activation of AMPK/Nrf2 signal molecules.

  • Wei-Yin Wu‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2020‎

Doxorubicin cardiotoxicity is frequently reported in patients undergoing chemotherapy. The present study investigates whether cardiomyopathy induced by doxorubicin can be improved by the natural flavone acacetin in a mouse model and uncovers the potential molecular mechanism using cultured rat cardiomyoblasts. It was found that the cardiac dysfunction and myocardial fibrosis induced by doxorubicin were significantly improved by acacetin in mice with impaired Nrf2/HO-1 and Sirt1/pAMPK molecules, which is reversed by acacetin treatment. Doxorubicin decreased cell viability and increased ROS production in rat cardiomyoblasts; these effects are significantly countered by acacetin (0.3-3 μM) in a concentration-dependent manner via activating Sirt1/pAMPK signals and enhancing antioxidation (Nrf2/HO-1 and SOD1/SOD2) and anti-apoptosis. These protective effects were abolished in cells with silencing Sirt1. The results demonstrate for the first time that doxorubicin cardiotoxicity is antagonized by acacetin via Sirt1-mediated activation of AMPK/Nrf2 signal molecules, indicating that acacetin may be a drug candidate used clinically for protecting against doxorubicin cardiomyopathy.


CXC- receptor 2 promotes extracellular matrix production and attenuates migration in peripapillary human scleral fibroblasts under mechanical strain.

  • Chen Qiu‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2022‎

As the main loading-bearing tissue of eye, sclera exerts an important role in the pathophysiology of glaucoma. Intraocular pressure (IOP) generates mechanical strain on sclera. Recent studies have demonstrated that sclera, especially the peripapillary sclera, undergoes complicated remodelling under the mechanical strain. However, the mechanisms of the hypertensive scleral remodelling in human eyes remained uncertain. In this study, peripapillary human scleral fibroblasts (ppHSFs) were applied cyclic mechanical strain by Flexcell-5000™ tension system. We found that CXC- ligands and CXCR2 were differentially expressed after strain. Increased cell proliferation and inhibited cell motility were observed when CXCR2 was upregulated under the strain, whereas cell proliferation and motility did not have a significant change when CXCR2 was knocked down. CXCR2 could facilitate cell proliferation ability, modulate the mRNA and protein expressions of type I collagen and matrix metalloproteinase 2 via JAK1/2-STAT3 signalling pathway. In addition, CXCR2 might inhibit cell migration via FAK/MLC2 pathway. Taken together, CXCR2 regulated protein production and affected cell behaviours of ppHSFs. It might be a potential therapeutic target for the hypertensive scleral remodelling.


Fibroblast growth factor homologous factor 1 stimulates Leydig cell regeneration from stem cells in male rats.

  • Jiaying Mo‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2019‎

Fibroblast growth factor homologous factor 1 (FHF1) is an intracellular protein that does not bind to cell surface fibroblast growth factor receptor. Here, we report that FHF1 is abundantly present in Leydig cells with up-regulation during its development. Adult male Sprague Dawley rats were intraperitoneally injected with 75 mg/kg ethane dimethane sulphonate (EDS) to ablate Leydig cells to initiate their regeneration. Then, rats daily received intratesticular injection of FHF1 (0, 10 and 100 ng/testis) from post-EDS day 14 for 14 days. FHF1 increased serum testosterone levels without affecting the levels of luteinizing hormone and follicle-stimulating hormone. FHF1 increased the cell number staining with HSD11B1, a biomarker for Leydig cells at the advanced stage, without affecting the cell number staining with CYP11A1, a biomarker for all Leydig cells. FHF1 did not affect PCNA-labelling index in Leydig cells. FHF1 increased Leydig cell mRNA (Lhcgr, Scarb1, Star, Cyp11a1, Hsd3b1, Cyp17a1, Hsd17b3, Insl3, Nr5a1 and Hsd11b1) and their protein levels in vivo. FHF1 increased preadipocyte biomarker Dlk1 mRNA level and decreased fully differentiated adipocyte biomarker (Fabp4 and Lpl) mRNA and their protein levels. In conclusion, FHF1 promotes Leydig cell regeneration from stem cells while inhibiting the differentiation of preadipocyte/stem cells into adipocytes in EDS-treated testis.


PTCSC3-mediated glycolysis suppresses thyroid cancer progression via interfering with PGK1 degradation.

  • Bo Jiang‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2021‎

The Warburg effect (aerobic glycolysis), a hallmark of cancer, serves as a promising target for diagnosis and therapy. Growing evidence indicates that long non-coding RNAs (lncRNAs) play an important role in aerobic glycolysis of various tumours. However, the correlation between lncRNAs and glycolysis in thyroid cancer cells is still poorly understood. In this study, we showed that lncRNA papillary thyroid cancer susceptibility candidate 3 (PTCSC3) was significantly downregulated in papillary thyroid carcinoma (PTC). Overexpression of PTCSC3 significantly inhibited the aerobic glycolysis and tumour growth of PTC cells. Consistently, PTCSC3 overexpression suppressed tumour progress in vivo. Mechanistically, PTCSC3 inhibits aerobic glycolysis and proliferation of PTC by directly interacting with PGK1, a key enzyme in glycolytic pathway. As a result, PTCSC3 performs its role in PTC development via PGK1 and may be a potential therapeutic target for PTC treatment.


Bradykinin-mediated Ca2+ signalling regulates cell growth and mobility in human cardiac c-Kit+ progenitor cells.

  • Gang Li‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2018‎

Our recent study showed that bradykinin increases cell cycling progression and migration of human cardiac c-Kit+ progenitor cells by activating pAkt and pERK1/2 signals. This study investigated whether bradykinin-mediated Ca2+ signalling participates in regulating cellular functions in cultured human cardiac c-Kit+ progenitor cells using laser scanning confocal microscopy and biochemical approaches. It was found that bradykinin increased cytosolic free Ca2+ ( Cai2+ ) by triggering a transient Ca2+ release from ER IP3Rs followed by sustained Ca2+ influx through store-operated Ca2+ entry (SOCE) channel. Blockade of B2 receptor with HOE140 or IP3Rs with araguspongin B or silencing IP3R3 with siRNA abolished both Ca2+ release and Ca2+ influx. It is interesting to note that the bradykinin-induced cell cycle progression and migration were not observed in cells with siRNA-silenced IP3R3 or the SOCE component TRPC1, Orai1 or STIM1. Also the bradykinin-induced increase in pAkt and pERK1/2 as well as cyclin D1 was reduced in these cells. These results demonstrate for the first time that bradykinin-mediated increase in free Cai2+ via ER-IP3R3 Ca2+ release followed by Ca2+ influx through SOCE channel plays a crucial role in regulating cell growth and migration via activating pAkt, pERK1/2 and cyclin D1 in human cardiac c-Kit+ progenitor cells.


Effects of autophagy on apoptosis of articular chondrocytes in adjuvant arthritis rats.

  • Renpeng Zhou‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2019‎

Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease that eventually leads to joint deformities and loss of joint function. Previous studies have demonstrated a close relationship between autophagy and the development of RA. Although autophagy and apoptosis are two different forms of programmed death, the relationship between them in relation to RA remains unclear. In this study, we explored the effect of autophagy on apoptosis of articular chondrocytes in vivo and in vitro. Adjuvant arthritis (AA) and acid-induced primary articular chondrocyte apoptosis were used as in vivo and in vitro models, respectively. Articular chondrocyte autophagy and apoptosis were both observed dynamically in AA rat articular cartilage at different stages (15 days, 25 days and 35 days). Moreover, chondrocyte apoptosis and articular cartilage injury in AA rats were increased by the autophagy inhibitor 3-methyladenine (3-MA) and decreased by the autophagy activator rapamycin. In addition, pre-treatment with 3-MA increased acid-induced chondrocyte apoptosis, while pre-treatment with rapamycin reduced acid-induced chondrocyte apoptosis in vitro. These results suggest that autophagy might be a potential target for the treatment of RA.


A novel TXNIP-based mechanism for Cx43-mediated regulation of oxidative drug injury.

  • Kun Gao‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2015‎

Gap junctions (GJs) play an important role in the regulation of cell response to many drugs. However, little is known about their mechanisms. Using an in vitro model of cytotoxicity induced by geneticin (G418), we explored the potential signalling mechanisms involved. Incubation of cells with G418 resulted in cell death, as indicated by the change in cell morphology, loss of cell viability and activation of caspase-3. Before the onset of cell injury, G418 induced reactive oxygen species (ROS) generation, activated oxidative sensitive kinase P38 and caused a shift of connexin 43 (Cx43) from non-phosphorylated form to hyperphosphorylated form. These changes were largely prevented by antioxidants, suggesting an implication of oxidative stress. Downregulation of Cx43 with inhibitors or siRNA suppressed the expression of thioredoxin-interacting protein (TXNIP), activated Akt and protected cells against the toxicity of G418. Further analysis revealed that inhibition of TXNIP with siRNA activated Akt and reproduced the protective effect of Cx43-inhibiting agents, whereas suppression of Akt sensitized cells to the toxicity of G418. Furthermore, interference of TXNIP/Akt also affected puromycin- and adriamycin-induced cell injury. Our study thus characterized TXNIP as a presently unrecognized molecule implicated in the regulatory actions of Cx43 on oxidative drug injury. Targeting Cx43/TXNIP/Akt signalling cascade might be a promising approach to modulate cell response to drugs.


Linc00475 promotes the progression of glioma by regulating the miR-141-3p/YAP1 axis.

  • Mingjun Yu‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2021‎

Glioma is the most prevalent and lethal primary brain tumour. Abundant long non-coding RNAs ( lncRNAs) are aberrant and play crucial roles in the oncogenesis of glioma. The exact functions of linc00475 in glioma remain blurred. Here, we analysed the expression levels of linc00475 by qRT-PCR and discovered that linc00475 was up-regulated in glioma and predicted a poor prognosis in patients with glioma. Besides, inhibiting linc00475 restrained the progression of glioma in vitro and in vivo. Further experiments confirmed that linc00475 regulated the progression of glioma by acting as a sponge for miR-141-3p. Moreover, we detected the binding sites of linc00475 and miR-141-3p, the YAP1- 3'UTR and miR-141-3p by luciferase reporters. The rescue assays confirmed that inhibiting linc00475 restrained the progression of glioma through the miR-141-3p/YAP1 pathway. Collectively, our research demonstrates the key roles of linc00475 in glioma, which could be a promising therapeutic target.


Induced pluripotent stem cell-derived conditional medium promotes Leydig cell anti-apoptosis and proliferation via autophagy and Wnt/β-catenin pathway.

  • Xiaoling Guo‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2018‎

Leydig cell transplantation is a better alternative in the treatment of androgen-deficient males. The main purpose of this study was to investigate the effects of induced pluripotent stem cell-derived conditioned medium (iPS-CM) on the anti-apoptosis, proliferation and function of immature Leydig cells (ILCs), and illuminate the underlying mechanisms. ILCs were exposed to 200 μmol/L hydrogen peroxide (H2 O2 ) for 24 hours with or without iPS-CM treatments. Cell apoptosis was detected by flow cytometric analysis. Cell proliferation was assessed using cell cycle assays and EdU staining. The steroidogenic enzyme expressions were quantified with Western blotting. The results showed that iPS-CM significantly reduced H2 O2 -induced ILC apoptosis through down-regulation of autophagic and apoptotic proteins LC3-I/II, Beclin-1, P62, P53 and BAX as well as up-regulation of BCL-2, which could be inhibited by LY294002 (25 μmol/L). iPS-CM could also promote ILC proliferation through up-regulation of β-catenin and its target proteins cyclin D1, c-Myc and survivin, but was inhibited by XAV939 (10 μmol/L). The level of bFGF in iPS-CM was higher than that of DMEM-LG. Exogenous bFGF (20 ng/mL) or Wnt signalling agonist lithium chloride (LiCl) (20 mmol/L) added into DMEM-LG could achieve the similar effects of iPS-CM. Meanwhile, iPS-CM could improve the medium testosterone levels and up-regulation of LHCGR, SCARB1, STAR, CYP11A1, HSD3B1, CYP17A1, HSD17B3 and SF-1 in H2 O2 -induced ILCs. In conclusion, iPS-CM could reduce H2 O2 -induced ILC apoptosis through the activation of autophagy, promote proliferation through up-regulation of Wnt/β-catenin pathway and enhance testosterone production through increasing steroidogenic enzyme expressions, which might be used in regenerative medicine for future.


Bone marrow cells are differentiated into MDSCs by BCC-Ex through down-regulating the expression of CXCR4 and activating STAT3 signalling pathway.

  • Quan-Wen Liu‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2021‎

Studies showed that the increase of myeloid-derived suppressor cells (MDSCs) in tumour microenvironment is closely related to the resistant treatment and poor prognosis of metastatic breast cancer. However, the effect of tumour-derived exosomes on MDSCs and its mechanism are not clear. Here, we reported that breast cancer cells (4T1)-secreted exosomes (BCC-Ex) were able to differentiate bone marrow cells into MDSCs and significantly inhibited the proliferation of T lymphocytes to provide an immunosuppressive microenvironment for cancer cells in vivo and in vitro. The number of MDSCs in bone marrow and spleen of 4T1 tumour-bearing mice and BCC-Ex infused mice was significantly higher than that of normal mice, whereas the number of T lymphocytes in spleen was significantly decreased. In addition, BCC-Ex markedly promoted the differentiation of MDSCs from bone marrow cells or bone marrow cells derived macrophages, seen as the increased expressions of MDSCs-related functional proteins Arginase-1 (Arg-1) and inducible nitric oxide synthase (iNOS). Furthermore, BCC-Ex significantly down-regulated the expressions of chemokine receptor CXCR4 and markedly up-regulated the levels of inflammatory cytokines IL-6 and IL-10 in bone marrow cells and macrophages and remarkably inhibited the division and proliferation of T cells. Importantly, CXCR4 agonist, CXCL12, could reverse the function of BCC-Ex, indicating that BCC-Ex-induced MDSCs might be dependent on the down-regulation of CXCR4. Western blot showed that BCC-Ex significantly promoted the phosphorylation of STAT3 in bone marrow cells, resulting in the inhibitions of the proliferation and apoptosis of bone marrow cells, and the aggravation of the differentiation of bone marrow cells into MDSCs.


LINC00312 represses proliferation and metastasis of colorectal cancer cells by regulation of miR-21.

  • Gang Li‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2018‎

Long non-coding RNAs (lncRNAs) have emerged as important regulators of cancer, including colorectal cancer (CRC). The exact expression pattern of long intergenic noncoding RNA 00312 (LINC00312) in CRC and its mechanisms of action have not been reported. Here, we found that LINC00312 is underexpressed in CRC tissues and cell lines. Functional experiments suggested that LINC00312 suppresses growth, migration and invasion of CRC cells in vitro and attenuates tumour proliferation and metastasis in vivo. Mechanistically, LINC00312 was found to regulate the malignancy of CRC cells by binding to miR-21 and by functioning as a tumour suppressor targeting PTEN. Overexpression of miR-21 or knockdown of PTEN attenuated the LINC00312-mediated inhibition of CRC cell proliferation and invasion. Taken together, our results elucidate the role of the LINC00312-miR-21-PTEN axis in CRC cell proliferation and tumour progression and may lead to new lncRNA-based diagnostics or therapeutics for CRC.


Differentiation of human adipose derived stem cells into Leydig-like cells with molecular compounds.

  • Yong Chen‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2019‎

Leydig cells (LCs) are the primary source of testosterone in the testis, and testosterone deficiency caused by LC functional degeneration can lead to male reproductive dysfunction. LC replacement transplantation is a very promising approach for this disease therapy. Here, we report that human adipose derived stem cells (ADSCs) can be differentiated into Leydig-like cells using a novel differentiation method based on molecular compounds. The isolated human ADSCs expressed positive CD29, CD44, CD59 and CD105, negative CD34, CD45 and HLA-DR using flow cytometry, and had the capacity of adipogenic and osteogenic differentiation. ADSCs derived Leydig-like cells (ADSC-LCs) acquired testosterone synthesis capabilities, and positively expressed LC lineage-specific markers LHCGR, STAR, SCARB1, SF-1, CYP11A1, CYP17A1, HSD3B1 and HSD17B3 as well as negatively expressed ADSC specific markers CD29, CD44, CD59 and CD105. When ADSC-LCs labelled with lipophilic red dye (PKH26) were injected into rat testes which were selectively eliminated endogenous LCs using ethylene dimethanesulfonate (EDS, 75 mg/kg), the transplanted ADSC-LCs could survive and function in the interstitium of testes, and accelerate the recovery of blood testosterone levels and testis weights. These results demonstrated that ADSCs could be differentiated into Leydig-like cells by few defined molecular compounds, which might lay the foundation for further clinical application of ADSC-LC transplantation therapy.


Acacetin exerts antioxidant potential against atherosclerosis through Nrf2 pathway in apoE-/- Mice.

  • Yao Wu‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2021‎

Oxidative stress has a considerable influence on endothelial cell dysfunction and atherosclerosis. Acacetin, an anti-inflammatory and antiarrhythmic, is frequently used in the treatment of myocarditis, albeit its role in managing atherosclerosis is currently unclear. Thus, we evaluated the regulatory effects of acacetin in maintaining endothelial cell function and further investigated whether the flavonoid could attenuate atherosclerosis in apolipoprotein E deficiency (apoE-/- ) mice. Different concentrations of acacetin were tested on EA.hy926 cells, either induced or non-induced by human oxidized low-density lipoprotein (oxLDL), to clarify its influence on cell viability, cellular reactive oxidative stress (ROS) level, apoptotic ratios and other regulatory effects. In vivo, apoE-/- mice were fed either a Western diet or a chow diet. Acacetin pro-drug (15 mg/kg) was injected subcutaneously two times a day for 12 weeks. The effects of acacetin on the atherosclerotic process, plasma inflammatory factors and lipid metabolism were also investigated. Acacetin significantly increased EA.hy926 cell viability by reducing the ratios of apoptotic and necrotic cells at 3 μmol/L. Moreover, 3 μmol/L acacetin clearly decreased ROS levels and enhanced reductase protein expression through MsrA and Nrf2 pathway through phosphorylation of Nrf2 and degradation of Keap1. In vivo, acacetin treatment remarkably attenuated atherosclerosis by increasing reductase levels in circulation and aortic roots, decreasing plasma inflammatory factor levels as well as accelerating lipid metabolism in Western diet-fed apoE-/- mice. Our findings demonstrate the anti-oxidative and anti-atherosclerotic effects of acacetin, in turn suggesting its potential therapeutic value in atherosclerotic-related cardiovascular diseases (CVD).


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: