Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 12 papers out of 12 papers

SLIT2-mediated ROBO2 signaling restricts kidney induction to a single site.

  • Uta Grieshammer‎ et al.
  • Developmental cell‎
  • 2004‎

Kidney development occurs in a stereotypic position along the body axis. It begins when a single ureteric bud emerges from the nephric duct in response to GDNF secreted by the adjacent nephrogenic mesenchyme. Posterior restriction of Gdnf expression is considered critical for correct positioning of ureteric bud development. Here we show that mouse mutants lacking either SLIT2 or its receptor ROBO2, molecules known primarily for their function in axon guidance and cell migration, develop supernumerary ureteric buds that remain inappropriately connected to the nephric duct, and that the SLIT2/ROBO2 signal is transduced in the nephrogenic mesenchyme. Furthermore, we show that Gdnf expression is inappropriately maintained in anterior nephrogenic mesenchyme in these mutants. Thus our data identify an intercellular signaling system that restricts, directly or indirectly, the extent of the Gdnf expression domain, thereby precisely positioning the site of kidney induction.


Sprouty1 is a critical regulator of GDNF/RET-mediated kidney induction.

  • M Albert Basson‎ et al.
  • Developmental cell‎
  • 2005‎

Intercellular signaling molecules and their receptors, whose expression must be tightly regulated in time and space, coordinate organogenesis. Regulators of intracellular signaling pathways provide an additional level of control. Here we report that loss of the receptor tyrosine kinase (RTK) antagonist, Sprouty1 (Spry1), causes defects in kidney development in mice. Spry1(-/-) embryos have supernumerary ureteric buds, resulting in the development of multiple ureters and multiplex kidneys. These defects are due to increased sensitivity of the Wolffian duct to GDNF/RET signaling, and reducing Gdnf gene dosage correspondingly rescues the Spry1 null phenotype. We conclude that the function of Spry1 is to modulate GDNF/RET signaling in the Wolffian duct, ensuring that kidney induction is restricted to a single site. These results demonstrate the importance of negative feedback regulation of RTK signaling during kidney induction and suggest that failures in feedback control may underlie some human congenital kidney malformations.


The tumor suppressor CDX2 opposes pro-metastatic biomechanical modifications of colon cancer cells through organization of the actin cytoskeleton.

  • Nadine Platet‎ et al.
  • Cancer letters‎
  • 2017‎

The vast majority of cancer deaths are caused by the formation of metastases rather than the primary tumor itself. Despite this clinical importance, the molecular and cellular events that support the dissemination of cancer cells are not yet fully unraveled. We have previously shown that CDX2, a homeotic transcription factor essential for gut development, acts as a colon-specific tumor suppressor and opposes metastasis. Here, using a combination of biochemical, biophysical, and immunofluorescence techniques, we further investigated the mechanisms promoted by CDX2 that might antagonize tumor cell dissemination. We found that CDX2 expression regulates the transcription of RHO GEFs, thereby activating RHO signaling cascades that lead to reorganization of the actin cytoskeleton and enhanced adherent junctions. Accordingly, we observed by atomic force microscopy (AFM) that colon cancer cells expressing CDX2 are less deformable, a feature that has been shown to correlate with poor metastatic potential. Thus, this study illustrates how the loss of expression of a transcription factor during colon cancer progression modifies the biomechanical characteristics of tumor cells and hence facilitates invasion and metastasis.


Anti-tumor effects of P-LPK-CPT, a peptide-camptothecin conjugate, in colorectal cancer.

  • Lidan Hou‎ et al.
  • Communications biology‎
  • 2022‎

To explore highly selective targeting molecules of colorectal cancer (CRC) is a challenge. We previously identified a twelve-amino acid peptide (LPKTVSSDMSLN, namely P-LPK) by phage display technique which may specifically binds to CRC cells. Here we show that P-LPK selectively bind to a panel of human CRC cell lines and CRC tissues. In vivo, Gallium-68 (68Ga) labeled P-LPK exhibits selective accumulation at tumor sites. Then, we designed a peptide-conjugated drug comprising P-LPK and camptothecin (CPT) (namely P-LPK-CPT), and found P-LPK-CPT significantly inhibits tumor growth with fewer side effects in vitro and in vivo. Furthermore, through co-immunoprecipitation and molecular docking experiment, the glutamine transporter solute carrier 1 family member 5 (SLC1A5) was identified as the possible target of P-LPK. The binding ability of P-LPK and SLC1A5 is verified by surface plasmon resonance and immunofluorescence. Taken together, P-LPK-CPT is highly effective for CRC and deserves further development as a promising anti-tumor therapeutic for CRC, especially SLC1A5-high expression type.


Dichloroacetate restores colorectal cancer chemosensitivity through the p53/miR-149-3p/PDK2-mediated glucose metabolic pathway.

  • Yu Liang‎ et al.
  • Oncogene‎
  • 2020‎

The development of chemoresistance remains a major challenge that accounts for colorectal cancer (CRC) lethality. Dichloroacetate (DCA) was originally used as a metabolic regulator in the treatment of metabolic diseases; here, DCA was assayed to identify the mechanisms underlying the chemoresistance of CRC. We found that DCA markedly enhanced chemosensitivity of CRC cells to fluorouracil (5-FU), and reduced the colony formation due to high levels of apoptosis. Using the microarray assay, we noted that miR-149-3p was involved in the chemoresistance of CRC, which was modulated by wild-type p53 after DCA treatment. In addition, PDK2 was identified as a direct target of miR-149-3p. Mechanistic analyses showed that overexpression of miR-149-3p enhanced 5-FU-induced apoptosis and reduced glucose metabolism, similar to the effects of PDK2 knockdown. In addition, overexpression of PDK2 partially reversed the inhibitory effect of miR-149-3p on glucose metabolism. Finally, both DCA treatment and miR-149-3p overexpression in 5-FU-resistant CRC cells were found to markedly sensitize the chemotherapeutic effect of 5-FU in vivo, and this effect was also validated in a small retrospective cohort of CRC patients. Taken together, we determined that the p53/miR-149-3p/PDK2 signaling pathway can potentially be targeted with DCA treatment to overcome chemoresistant CRC.


The isthmic organizer signal FGF8 is required for cell survival in the prospective midbrain and cerebellum.

  • Candace L Chi‎ et al.
  • Development (Cambridge, England)‎
  • 2003‎

Numerous studies have demonstrated that the midbrain and cerebellum develop from a region of the early neural tube comprising two distinct territories known as the mesencephalon (mes) and rostral metencephalon (met; rhombomere 1), respectively. Development of the mes and met is thought to be regulated by molecules produced by a signaling center, termed the isthmic organizer (IsO), which is localized at the boundary between them. FGF8 and WNT1 have been implicated as key components of IsO signaling activity, and previous studies have shown that in Wnt1(-/-) embryos, the mes/met is deleted by the 30 somite stage ( approximately E10) (McMahon, A. P. and Bradley, A. (1990) Cell 62, 1073-1085). We have studied the function of FGF8 in mouse mes/met development using a conditional gene inactivation approach. In our mutant embryos, Fgf8 expression was transiently detected, but then was eliminated in the mes/met by the 10 somite stage ( approximately E8.75). This resulted in a failure to maintain expression of Wnt1 as well as Fgf17, Fgf18, and Gbx2 in the mes/met at early somite stages, and in the absence of the midbrain and cerebellum at E17.5. We show that a major cause of the deletion of these structures is ectopic cell death in the mes/met between the 7 and 30 somite stages. Interestingly, we found that the prospective midbrain was deleted at an earlier stage than the prospective cerebellum. We observed a remarkably similar pattern of cell death in Wnt1 null homozygotes, and also detected ectopic mes/met cell death in En1 null homozygotes. Our data show that Fgf8 is part of a complex gene regulatory network that is essential for cell survival in the mes/met.


Kidney development in the absence of Gdnf and Spry1 requires Fgf10.

  • Odyssé Michos‎ et al.
  • PLoS genetics‎
  • 2010‎

GDNF signaling through the Ret receptor tyrosine kinase (RTK) is required for ureteric bud (UB) branching morphogenesis during kidney development in mice and humans. Furthermore, many other mutant genes that cause renal agenesis exert their effects via the GDNF/RET pathway. Therefore, RET signaling is believed to play a central role in renal organogenesis. Here, we re-examine the extent to which the functions of Gdnf and Ret are unique, by seeking conditions in which a kidney can develop in their absence. We find that in the absence of the negative regulator Spry1, Gdnf, and Ret are no longer required for extensive kidney development. Gdnf-/-;Spry1-/- or Ret-/-;Spry1-/- double mutants develop large kidneys with normal ureters, highly branched collecting ducts, extensive nephrogenesis, and normal histoarchitecture. However, despite extensive branching, the UB displays alterations in branch spacing, angle, and frequency. UB branching in the absence of Gdnf and Spry1 requires Fgf10 (which normally plays a minor role), as removal of even one copy of Fgf10 in Gdnf-/-;Spry1-/- mutants causes a complete failure of ureter and kidney development. In contrast to Gdnf or Ret mutations, renal agenesis caused by concomitant lack of the transcription factors ETV4 and ETV5 is not rescued by removing Spry1, consistent with their role downstream of both RET and FGFRs. This shows that, for many aspects of renal development, the balance between positive signaling by RTKs and negative regulation of this signaling by SPRY1 is more critical than the specific role of GDNF. Other signals, including FGF10, can perform many of the functions of GDNF, when SPRY1 is absent. But GDNF/RET signaling has an apparently unique function in determining normal branching pattern. In contrast to GDNF or FGF10, Etv4 and Etv5 represent a critical node in the RTK signaling network that cannot by bypassed by reducing the negative regulation of upstream signals.


The UCSF Mouse Inventory Database Application, an Open Source Web App for Sharing Mutant Mice Within a Research Community.

  • Estelle Wall‎ et al.
  • G3 (Bethesda, Md.)‎
  • 2020‎

The UCSF Mouse Inventory Database Application is an open-source Web App that provides information about the mutant alleles, transgenes, and inbred strains maintained by investigators at the university and facilitates sharing of these resources within the university community. The Application is designed to promote collaboration, decrease the costs associated with obtaining genetically-modified mice, and increase access to mouse lines that are difficult to obtain. An inventory of the genetically-modified mice on campus and the investigators who maintain them is compiled from records of purchases from external sources, transfers from researchers within and outside the university, and from data provided by users. These data are verified and augmented with relevant information harvested from public databases, and stored in a succinct, searchable database secured on the university network. Here we describe this resource and provide information about how to implement and maintain such a mouse inventory database application at other institutions.


Functional interaction between the homeoprotein CDX1 and the transcriptional machinery containing the TATA-binding protein.

  • Alexandre Calon‎ et al.
  • Nucleic acids research‎
  • 2007‎

We have previously reported that the CDX1 homeoprotein interacts with the TATA-box binding protein (TBP) on the promoter of the glucose-6-phosphatase (G6Pase) gene. We show here that CDX1 interacts with TBP via the homeodomain and that the transcriptional activity additionally requires the N-terminal domain upstream of the homeodomain. CDX1 interacting with TBP is connected to members of the TFIID and Mediator complexes, two major elements of the general transcriptional machinery. Transcription luciferase assays performed using an altered-specificity mutant of TBP provide evidence for the functionality of the interaction between CDX1 and TBP. Unlike CDX1, CDX2 does not interact with TBP nor does it transactivate the G6Pase promoter. Swapping experiments between the domains of CDX1 and CDX2 indicate that, despite opposite functional effects of the homeoproteins on the G6Pase promoter, the N-terminal domains and homeodomains of both CDX1 and CDX2 have the intrinsic ability to activate transcription and to interact with TBP. However, the carboxy domains define the specificity of CDX1 and CDX2. Thus, intra-molecular interactions control the activity and partner recruitment of CDX1 and CDX2, leading to different molecular functions.


Transcriptional activator TAp63 is upregulated in muscular atrophy during ALS and induces the pro-atrophic ubiquitin ligase Trim63.

  • Yannick von Grabowiecki‎ et al.
  • eLife‎
  • 2016‎

Mechanisms of muscle atrophy are complex and their understanding might help finding therapeutic solutions for pathologies such as amyotrophic lateral sclerosis (ALS). We meta-analyzed transcriptomic experiments of muscles of ALS patients and mouse models, uncovering a p53 deregulation as common denominator. We then characterized the induction of several p53 family members (p53, p63, p73) and a correlation between the levels of p53 family target genes and the severity of muscle atrophy in ALS patients and mice. In particular, we observed increased p63 protein levels in the fibers of atrophic muscles via denervation-dependent and -independent mechanisms. At a functional level, we demonstrated that TAp63 and p53 transactivate the promoter and increased the expression of Trim63 (MuRF1), an effector of muscle atrophy. Altogether, these results suggest a novel function for p63 as a contributor to muscular atrophic processes via the regulation of multiple genes, including the muscle atrophy gene Trim63.


Cdx2 homeoprotein inhibits non-homologous end joining in colon cancer but not in leukemia cells.

  • Benjamin Renouf‎ et al.
  • Nucleic acids research‎
  • 2012‎

Cdx2, a gene of the paraHox cluster, encodes a homeodomain transcription factor that plays numerous roles in embryonic development and in homeostasis of the adult intestine. Whereas Cdx2 exerts a tumor suppressor function in the gut, its abnormal ectopic expression in acute leukemia is associated to a pro-oncogenic function. To try to understand this duality, we have hypothesized that Cdx2 may interact with different protein partners in the two tissues and set up experiments to identify them by tandem affinity purification. We show here that Cdx2 interacts with the Ku heterodimer specifically in intestinal cells, but not in leukemia cells, via its homeodomain. Ku proteins do not affect Cdx2 transcriptional activity. However, Cdx2 inhibits in vivo and in vitro the DNA repair activity mediated by Ku proteins in intestinal cells. Whereas Cdx2 does not affect the recruitment of Ku proteins and DNA-PKcs into the DNA repair complex, it inhibits DNA-PKcs activity. Thus, we report here a new function of Cdx2, acting as an inhibitor of the DNA repair machinery, that may contribute to its tumor suppressor function specifically in the gut.


Genetic mosaic analysis reveals FGF receptor 2 function in terminal end buds during mammary gland branching morphogenesis.

  • Pengfei Lu‎ et al.
  • Developmental biology‎
  • 2008‎

FGF signaling is associated with breast cancer and is required for mammary placode formation in the mouse. In this study, we employed a genetic mosaic analysis based on Cre-mediated recombination to investigate FGF receptor 2 (Fgfr2) function in the postnatal mammary gland. Mosaic inactivation of Fgfr2 by the MMTV-Cre transgene enabled us to compare the behavior of Fgfr2 null and Fgfr2 heterozygous cells in the same gland. Fgfr2 null cells were at a competitive disadvantage to their Fgfr2 heterozygous neighbors in the highly proliferative terminal end buds (TEBs) at the invasion front, owing to a negative effect of loss of Fgfr2 function on cell proliferation. However, Fgfr2 null cells were tolerated in mature ducts. In these genetic mosaic mammary glands, the epithelial network is apparently built by TEBs that over time are composed of a progressively larger proportion of Fgfr2-positive cells. However, subsequently, most cells lose Fgfr2 function, presumably due to additional rounds of Cre-mediated recombination. Using an independent strategy to create mosaic mammary glands, which employed an adenovirus-Cre that acts only once, we confirmed that Fgfr2 null cells were out-competed by neighboring Fgfr2 heterozygous cells. Together, our data demonstrate that Fgfr2 functions in the proliferating and invading TEBs, but it is not required in the mature ducts of the pubertal mammary gland.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: