Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 53 papers

Irradiation-induced up-regulation of HLA-E on macrovascular endothelial cells confers protection against killing by activated natural killer cells.

  • Isabelle Riederer‎ et al.
  • PloS one‎
  • 2010‎

Apart from the platelet/endothelial cell adhesion molecule 1 (PECAM-1, CD31), endoglin (CD105) and a positive factor VIII-related antigen staining, human primary and immortalized macro- and microvascular endothelial cells (ECs) differ in their cell surface expression of activating and inhibitory ligands for natural killer (NK) cells. Here we comparatively study the effects of irradiation on the phenotype of ECs and their interaction with resting and activated NK cells.


NZ28-induced inhibition of HSF1, SP1 and NF-κB triggers the loss of the natural killer cell-activating ligands MICA/B on human tumor cells.

  • Daniela Schilling‎ et al.
  • Cancer immunology, immunotherapy : CII‎
  • 2015‎

The activity of natural killer (NK) cells is regulated by activating and inhibiting receptors, whereby the C-type lectin natural killer group 2D (NKG2D) receptor serves as the major activating receptor on NK cells which recognizes major histocompatibility class I chain-related proteins A and B (MICA/B). The MICA/B expression has been described to be regulated by the transcription factor heat shock factor 1 (HSF1). Inhibition of heat shock protein 90 (Hsp90) is known to induce the heat shock response via activation of HSF1 which is associated with tumor development, metastasis and therapy resistance and also with an increased susceptibility to NK cell-mediated lysis. Therefore, we compared the effects of Hsp90 inhibitor NVP-AUY922, HSF1 inhibitor NZ28 and HSF1 knockdown on the sensitivity of lung (H1339) and breast (MDA-MB-231, T47D) cancer cells to NK cell-mediated cytotoxicity and the expression of the NKG2D ligands MICA/B. Although NVP-AUY922 activates HSF1, neither the MICA/B surface density on tumor cells nor their susceptibility to NK cell-mediated lysis was affected. A single knockdown of HSF1 by shRNA decreased the surface expression of MICB but not that of MICA, and thereby, the NK cell-mediated lysis was only partially blocked. In contrast, NZ28 completely blocked the MICA/B membrane expression on tumor cells and thereby strongly inhibited the NK cell-mediated cytotoxicity. This effect might be explained by a simultaneous inhibition of the transcription factors HSF1, Sp1 and NF-κB by NZ28. These findings suggest that new anticancer therapeutics should be investigated with respect to their effects on the innate immune system.


Role of membrane Hsp70 in radiation sensitivity of tumor cells.

  • Naoya Murakami‎ et al.
  • Radiation oncology (London, England)‎
  • 2015‎

The major stress-inducible heat shock protein 70 (Hsp70) is frequently overexpressed in the cytosol and integrated in the plasma membrane of tumor cells via lipid anchorage. Following stress such as non-lethal irradiation Hsp70 synthesis is up-regulated. Intracellular located Hsp70 is known to exert cytoprotective properties, however, less is known about membrane (m)Hsp70. Herein, we investigate the role of mHsp70 in the sensitivity towards irradiation in tumor sublines that differ in their cytosolic and/or mHsp70 levels.


Radiosensitization of HSF-1 Knockdown Lung Cancer Cells by Low Concentrations of Hsp90 Inhibitor NVP-AUY922.

  • Annett Kühnel‎ et al.
  • Cells‎
  • 2019‎

The inhibition of heat shock protein 90 (Hsp90) a molecular chaperone for multiple oncogenic client proteins is considered as a promising approach to overcome radioresistance. Since most Hsp90 inhibitors activate HSF-1 that induces the transcription of cytoprotective and tumor-promoting stress proteins such as Hsp70 and Hsp27, a combined approach consisting of HSF-1 knockdown (k.d.) and Hsp90 inhibition was investigated. A specific HSF-1 k.d. was achieved in H1339 lung cancer cells using RNAi-Ready pSIRENRetroQ vectors with puromycin resistance. The Hsp90 inhibitor NVP-AUY922 was evaluated at low concentrations-ranging from 1-10 nM-in control and HSF-1 k.d. cells. Protein expression (i.e., Hsp27/Hsp70, HSF-1, pHSF-1, Akt, ß-actin) and transcriptional activity was assessed by western blot analysis and luciferase assays and radiosensitivity was measured by proliferation, apoptosis (Annexin V, active caspase 3), clonogenic cell survival, alkaline comet, γH2AX, 53BP1, and Rad51 foci assays. The k.d. of HSF-1 resulted in a significant reduction of basal and NVP-AUY922-induced Hsp70/Hsp27 expression levels. A combined approach consisting of HSF-1 k.d. and low concentrations of the Hsp90 inhibitor NVP-AUY922 reduces the Hsp90 client protein Akt and potentiates radiosensitization, which involves an impaired homologous recombination mediated by Rad51. Our findings are key for clinical applications of Hsp90 inhibitors with respect to adverse hepatotoxic effects.


Regional Hyperthermia Enhances Mesenchymal Stem Cell Recruitment to Tumor Stroma: Implications for Mesenchymal Stem Cell-Based Tumor Therapy.

  • Mariella Tutter‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2021‎

The tropism of mesenchymal stem cells (MSCs) for tumors forms the basis for their use as delivery vehicles for the tumor-specific transport of therapeutic genes, such as the theranostic sodium iodide symporter (NIS). Hyperthermia is used as an adjuvant for various tumor therapies and has been proposed to enhance leukocyte recruitment. Here, we describe the enhanced recruitment of adoptively applied NIS-expressing MSCs to tumors in response to regional hyperthermia. Hyperthermia (41°C, 1 h) of human hepatocellular carcinoma cells (HuH7) led to transiently increased production of immunomodulatory factors. MSCs showed enhanced chemotaxis to supernatants derived from heat-treated cells in a 3D live-cell tracking assay and was validated in vivo in subcutaneous HuH7 mouse xenografts. Cytomegalovirus (CMV)-NIS-MSCs were applied 6-48 h after or 24-48 h before hyperthermia treatment. Using 123I-scintigraphy, thermo-stimulation (41°C, 1 h) 24 h after CMV-NIS-MSC injection resulted in a significantly increased uptake of 123I in heat-treated tumors compared with controls. Immunohistochemical staining and real-time PCR confirmed tumor-selective, temperature-dependent MSC migration. Therapeutic efficacy was significantly enhanced by combining CMV-NIS-MSC-mediated 131I therapy with regional hyperthermia. We demonstrate here for the first time that hyperthermia can significantly boost tumoral MSC recruitment, thereby significantly enhancing therapeutic efficacy of MSC-mediated NIS gene therapy.


Targeted Hsp70 fluorescence molecular endoscopy detects dysplasia in Barrett's esophagus.

  • Hsin-Yu Fang‎ et al.
  • European journal of nuclear medicine and molecular imaging‎
  • 2022‎

The incidence of esophageal adenocarcinoma (EAC) has been increasing for decades without significant improvements in treatment. Barrett's esophagus (BE) is best established risk factor for EAC, but current surveillance with random biopsies cannot predict progression to cancer in most BE patients due to the low sensitivity and specificity of high-definition white light endoscopy.


Physiactisome: A New Nanovesicle Drug Containing Heat Shock Protein 60 for Treating Muscle Wasting and Cachexia.

  • Valentina Di Felice‎ et al.
  • Cells‎
  • 2022‎

Currently, no commercially available drugs have the ability to reverse cachexia or counteract muscle wasting and the loss of lean mass. Here, we report the methodology used to develop Physiactisome-a conditioned medium released by heat shock protein 60 (Hsp60)-overexpressing C2C12 cell lines enriched with small and large extracellular vesicles. We also present evidence supporting its use in the treatment of cachexia. Briefly, we obtain a nanovesicle-based secretion by genetically modifying C2C12 cell lines with an Hsp60-overexpressing plasmid. The secretion is used to treat naïve C2C12 cell lines. Physiactisome activates the expression of PGC-1α isoform 1, which is directly involved in mitochondrial biogenesis and muscle atrophy suppression, in naïve C2C12 cell lines. Proteomic analyses show Hsp60 localisation inside isolated nanovesicles and the localisation of several apocrine and merocrine molecules, with potential benefits for severe forms of muscle atrophy. Considering that Physiactisome can be easily obtained following tissue biopsy and can be applied to autologous muscle stem cells, we propose a potential nanovesicle-based anti-cachexia drug that could mimic the beneficial effects of exercise. Thus, Physiactisome may improve patient survival and quality of life. Furthermore, the method used to add Hsp60 into nanovesicles can be used to deliver other drugs or active proteins to vesicles.


Neutron-activated, plasmonically excitable Fe-Pt-Yb2O3 nanoparticles delivering anti-cancer radiation against human glioblastoma cells.

  • Klaus M Seemann‎ et al.
  • iScience‎
  • 2023‎

Magnetic nanoparticles can be functionalized in many ways for biomedical applications. Here, we combine four advantageous features in a novel Fe-Pt-Yb2O3 core-shell nanoparticle. (a) The nanoparticles have a size of 10 nm allowing them to diffuse through neuronal tissue. (b) The particles are superparamagnetic after synthesis and ferromagnetic after annealing, enabling directional control by magnetic fields, enhance NMRI contrast, and hyperthermia treatment. (c) After neutron-activation of the shell, they carry low-energetic, short half-life β-radiation from 175Yb, 177Yb, and 177Lu. (d) Additionally, the particles can be optically visualized by plasmonic excitation and luminescence. To demonstrate the potential of the particles for cancer treatment, we exposed cultured human glioblastoma cells (LN-18) to non-activated and activated particles to confirm that the particles are internalized, and that the β-radiation of the radioisotopes incorporated in the neutron-activated shell of the nanoparticles kills more than 98% of the LN-18 cancer cells, promising for future anti-cancer applications.


Increased heat shock protein 70 (Hsp70) serum levels and low NK cell counts after radiotherapy - potential markers for predicting breast cancer recurrence?

  • Anna Rothammer‎ et al.
  • Radiation oncology (London, England)‎
  • 2019‎

Breast cancer is the most common invasive tumor in women worldwide and the second cause of cancer-related deaths. After breast conserving surgery the tumor bed gets irradiated. Radiation-induced tumor cell death has been found to be associated with the release of damage-associated molecular patterns (DAMPs) including free Hsp70 that can stimulate inflammatory immune responses. Therefore, Hsp70 serum levels as well as the composition of lymphocyte subpopulations have been measured in breast cancer patients during therapy and in the follow-up period as potential predictors for clinical outcome.


Live cell imaging of mitochondria following targeted irradiation in situ reveals rapid and highly localized loss of membrane potential.

  • Dietrich W M Walsh‎ et al.
  • Scientific reports‎
  • 2017‎

The reliance of all cell types on the mitochondrial function for survival makes mitochondria an interesting target when trying to understand their role in the cellular response to ionizing radiation. By harnessing highly focused carbon ions and protons using microbeams, we have performed in situ live cell imaging of the targeted irradiation of individual mitochondria stained with Tetramethyl rhodamine ethyl ester (TMRE), a cationic fluorophore which accumulates electrophoretically in polarized mitochondria. Targeted irradiation with both carbon ions and protons down to beam spots of <1 μm induced a near instant loss of mitochondrial TMRE fluorescence signal in the targeted area. The loss of TMRE after targeted irradiation represents a radiation induced change in mitochondrial membrane potential. This is the first time such mitochondrial responses have been documented in situ after targeted microbeam irradiation. The methods developed and the results obtained have the ability to shed new light on not just mitochondria's response to radiation but to further elucidate a putative mechanism of radiation induced depolarization and mitochondrial response.


Targeting experimental orthotopic glioblastoma with chitosan-based superparamagnetic iron oxide nanoparticles (CS-DX-SPIONs).

  • Maxim Shevtsov‎ et al.
  • International journal of nanomedicine‎
  • 2018‎

Glioblastoma is the most devastating primary brain tumor of the central nervous system in adults. Magnetic nanocarriers may help not only for a targeted delivery of chemotherapeutic agents into the tumor site but also provide contrast enhancing properties for diagnostics using magnetic resonance imaging (MRI).


Dynamics of Heat Shock Protein 70 Serum Levels As a Predictor of Clinical Response in Non-Small-Cell Lung Cancer and Correlation with the Hypoxia-Related Marker Osteopontin.

  • Christian Ostheimer‎ et al.
  • Frontiers in immunology‎
  • 2017‎

Hypoxia mediates resistance to radio(chemo)therapy (RT) by stimulating the synthesis of hypoxia-related genes, such as osteopontin (OPN) and stress proteins, including the major stress-inducible heat shock protein 70 (Hsp70). Apart from its intracellular localization, Hsp70 is also present on the plasma membrane of viable tumor cells that actively release it in lipid vesicles with biophysical characteristics of exosomes. Exosomal Hsp70 contributes to radioresistance while Hsp70 derived from dying tumor cells can serve as a stimulator of immune cells. Given these opposing traits of extracellular Hsp70 and the unsatisfactory outcome of locally advanced lung tumors, we investigated the role of Hsp70 in the plasma of patients with advanced, non-metastasized non-small-cell lung cancer (NSCLC) before (T1) and 4-6 weeks after RT (T2) in relation to OPN as potential biomarkers for clinical response. Plasma levels of Hsp70 correlate with those of OPN at T1, and high OPN levels are significantly associated with a decreased overall survival (OS). Due to a therapy-induced reduction in viable tumor mass after RT Hsp70 plasma levels dropped significantly at T2 (p = 0.016). However, with respect to the immunostimulatory capacity of Hsp70 derived from dying tumor cells, patients with higher post-therapeutic Hsp70 levels showed a significantly better response to RT (p = 0.034) than those with lower levels at T2. In summary, high OPN plasma levels at T1 are indicative for poor OS, whereas elevated post-therapeutic Hsp70 plasma levels together with a drop of Hsp70 between T1 and T2, successfully predict favorable responses to RT. Monitoring the dynamics of Hsp70 in NSCLC patients before and after RT can provide additional predictive information for clinical outcome and therefore might allow a more rapid therapy adaptation.


Immunotherapeutic targeting of membrane Hsp70-expressing tumors using recombinant human granzyme B.

  • Mathias Gehrmann‎ et al.
  • PloS one‎
  • 2012‎

We have previously reported that human recombinant granzyme B (grB) mediates apoptosis in membrane heat shock protein 70 (Hsp70)-positive tumor cells in a perforin-independent manner.


Gold Nanoparticle Mediated Multi-Modal CT Imaging of Hsp70 Membrane-Positive Tumors.

  • Melanie A Kimm‎ et al.
  • Cancers‎
  • 2020‎

Imaging techniques such as computed tomographies (CT) play a major role in clinical imaging and diagnosis of malignant lesions. In recent years, metal nanoparticle platforms enabled effective payload delivery for several imaging techniques. Due to the possibility of surface modification, metal nanoparticles are predestined to facilitate molecular tumor targeting. In this work, we demonstrate the feasibility of anti-plasma membrane Heat shock protein 70 (Hsp70) antibody functionalized gold nanoparticles (cmHsp70.1-AuNPs) for tumor-specific multimodal imaging. Membrane-associated Hsp70 is exclusively presented on the plasma membrane of malignant cells of multiple tumor entities but not on corresponding normal cells, predestining this target for a tumor-selective in vivo imaging. In vitro microscopic analysis revealed the presence of cmHsp70.1-AuNPs in the cytosol of tumor cell lines after internalization via the endo-lysosomal pathway. In preclinical models, the biodistribution as well as the intratumoral enrichment of AuNPs were examined 24 h after i.v. injection in tumor-bearing mice. In parallel to spectral CT analysis, histological analysis confirmed the presence of AuNPs within tumor cells. In contrast to control AuNPs, a significant enrichment of cmHsp70.1-AuNPs has been detected selectively inside tumor cells in different tumor mouse models. Furthermore, a machine-learning approach was developed to analyze AuNP accumulations in tumor tissues and organs. In summary, utilizing mHsp70 on tumor cells as a target for the guidance of cmHsp70.1-AuNPs facilitates an enrichment and uniform distribution of nanoparticles in mHsp70-expressing tumor cells that enables various microscopic imaging techniques and spectral-CT-based tumor delineation in vivo.


SOX9 Knockout Induces Polyploidy and Changes Sensitivity to Tumor Treatment Strategies in a Chondrosarcoma Cell Line.

  • Sabine Stöckl‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

As most chemotherapeutic drugs are ineffective in the treatment of chondrosarcoma, we studied the expression pattern and function of SOX9, the master transcription factor for chondrogenesis, in chondrosarcoma, to understand the basic molecular principles needed for engineering new targeted therapies. Our study shows an increase in SOX9 expression in chondrosarcoma compared to normal cartilage, but a decrease when the tumors are finally defined as dedifferentiated chondrosarcoma (DDCS). In DDCS, SOX9 is almost completely absent in the non-chondroid, dedifferentiated compartments. CRISPR/Cas9-mediated knockout of SOX9 in a human chondrosarcoma cell line (HTB94) results in reduced proliferation, clonogenicity and migration, accompanied by an inability to activate MMP13. In contrast, adhesion, apoptosis and polyploidy formation are favored after SOX9 deletion, probably involving BCL2 and survivin. The siRNA-mediated SOX9 knockdown partially confirmed these results, suggesting the need for a certain SOX9 threshold for particular cancer-related events. To increase the efficacy of chondrosarcoma therapies, potential therapeutic approaches were analyzed in SOX9 knockout cells. Here, we found an increased impact of doxorubicin, but a reduced sensitivity for oncolytic virus treatment. Our observations present novel insight into the role of SOX9 in chondrosarcoma biology and could thereby help to overcome the obstacle of drug resistance and limited therapy options.


Application of High-Z Gold Nanoparticles in Targeted Cancer Radiotherapy-Pharmacokinetic Modeling, Monte Carlo Simulation and Radiobiological Effect Modeling.

  • Wei Bo Li‎ et al.
  • Cancers‎
  • 2021‎

High-Z gold nanoparticles (AuNPs) conjugated to a targeting antibody can help to improve tumor control in radiotherapy while simultaneously minimizing radiotoxicity to adjacent healthy tissue. This paper summarizes the main findings of a joint research program which applied AuNP-conjugates in preclinical modeling of radiotherapy at the Klinikum rechts der Isar, Technical University of Munich and Helmholtz Zentrum München. A pharmacokinetic model of superparamagnetic iron oxide nanoparticles was developed in preparation for a model simulating the uptake and distribution of AuNPs in mice. Multi-scale Monte Carlo simulations were performed on a single AuNP and multiple AuNPs in tumor cells at cellular and molecular levels to determine enhancements in the radiation dose and generation of chemical radicals in close proximity to AuNPs. A biologically based mathematical model was developed to predict the biological response of AuNPs in radiation enhancement. Although simulations of a single AuNP demonstrated a clear dose enhancement, simulations relating to the generation of chemical radicals and the induction of DNA strand breaks induced by multiple AuNPs showed only a minor dose enhancement. The differences in the simulated enhancements at molecular and cellular levels indicate that further investigations are necessary to better understand the impact of the physical, chemical, and biological parameters in preclinical experimental settings prior to a translation of these AuNPs models into targeted cancer radiotherapy.


Targeting Brain Tumors with Mesenchymal Stem Cells in the Experimental Model of the Orthotopic Glioblastoma in Rats.

  • Natalia Yudintceva‎ et al.
  • Biomedicines‎
  • 2021‎

Despite multimodal approaches for the treatment of multiforme glioblastoma (GBM) advances in outcome have been very modest indicating the necessity of novel diagnostic and therapeutic strategies. Currently, mesenchymal stem cells (MSCs) represent a promising platform for cell-based cancer therapies because of their tumor-tropism, low immunogenicity, easy accessibility, isolation procedure, and culturing. In the present study, we assessed the tumor-tropism and biodistribution of the superparamagnetic iron oxide nanoparticle (SPION)-labeled MSCs in the orthotopic model of C6 glioblastoma in Wistar rats. As shown in in vitro studies employing confocal microscopy, high-content quantitative image cytometer, and xCelligence system MSCs exhibit a high migratory capacity towards C6 glioblastoma cells. Intravenous administration of SPION-labeled MSCs in vivo resulted in intratumoral accumulation of the tagged cells in the tumor tissues that in turn significantly enhanced the contrast of the tumor when high-field magnetic resonance imaging was performed. Subsequent biodistribution studies employing highly sensitive nonlinear magnetic response measurements (NLR-M2) supported by histological analysis confirm the retention of MSCs in the glioblastoma. In conclusion, MSCs due to their tumor-tropism could be employed as a drug-delivery platform for future theranostic approaches.


Magnetic nanoparticles in theranostics of malignant melanoma.

  • Maxim Shevtsov‎ et al.
  • EJNMMI research‎
  • 2021‎

Malignant melanoma is an aggressive tumor with a tendency to metastasize early and with an increasing incidence worldwide. Although in early stage, melanoma is well treatable by excision, the chances of cure and thus the survival rate decrease dramatically after metastatic spread. Conventional treatment options for advanced disease include surgical resection of metastases, chemotherapy, radiation, targeted therapy and immunotherapy. Today, targeted kinase inhibitors and immune checkpoint blockers have for the most part replaced less effective chemotherapies. Magnetic nanoparticles as novel agents for theranostic purposes have great potential in the treatment of metastatic melanoma. In the present review, we provide a brief overview of treatment options for malignant melanoma with different magnetic nanocarriers for theranostics. We also discuss current efforts of designing magnetic particles for combined, multimodal therapies (e.g., chemotherapy, immunotherapy) for malignant melanoma.


Intravital optoacoustic and ultrasound bio-microscopy reveal radiation-inhibited skull angiogenesis.

  • Héctor Estrada‎ et al.
  • Bone‎
  • 2020‎

Angiogenesis is critical in bone development and growth. Dense, large-scale, and multi-layered vascular networks formed by thin-walled sinusoidal vessels perfuse the plate bones and play an important role in bone repair. Yet, the intricate functional morphology of skull microvasculature remains poorly understood as it is difficult to visualize using existing intravital microscopy techniques. Here we introduced an intravital, fully-transcranial imaging approach based on hybrid optoacoustic and ultrasound bio-microscopy for large-scale observations and quantitative analysis of the vascular morphology, angiogenesis, vessel remodeling, and subsurface roughness in murine skulls. Our approach revealed radiation-inhibited angiogenesis in the skull bone. We also observed previously undocumented sinusoidal vascular networks spanning the entire skullcap, thus opening new vistas for studying the complex interactions between calvarial, pial, and cortical vascular systems.


Time- and Dose-Dependent Effects of Ionizing Irradiation on the Membrane Expression of Hsp70 on Glioma Cells.

  • Helena Fellinger‎ et al.
  • Cells‎
  • 2020‎

The major stress-inducible protein Hsp70 (HSPA1A) is overexpressed in the cytosol of many highly aggressive tumor cells including glioblastoma multiforme and presented on their plasma membrane. Depending on its intracellular or membrane localization, Hsp70 either promotes tumor growth or serves as a target for natural killer (NK) cells. The kinetics of the membrane Hsp70 (mHsp70) density on human glioma cells (U87) was studied after different irradiation doses to define the optimal therapeutic window for Hsp70-targeting NK cells. To maintain the cells in the exponential growth phase during a cultivation period of 7 days, different initial cell counts were seeded. Although cytosolic Hsp70 levels remained unchanged on days 4 and 7 after a sublethal irradiation with 2, 4 and 6 Gy, a dose of 2 Gy resulted in an upregulated mHsp70 density in U87 cells which peaked on day 4 and started to decline on day 7. Higher radiation doses (4 Gy, 6 Gy) resulted in an earlier and more rapid onset of the mHsp70 expression on days 2 and 1, respectively, followed by a decline on day 5. Membrane Hsp70 levels were higher on cells in G2/M than in G1; however, an irradiation-induced cell cycle arrest on days 4 and 7 was not associated with an increase in the mHsp70 density. Extracellular Hsp70 concentrations in the supernatant of irradiated cells were significantly higher than sham (0 Gy) irradiated cells on days 4 and 7, but not on day 1. Functionally, elevated mHsp70 densities were associated with a significantly better lysis by Hsp70-targeting NK cells. In summary, the kinetics of changes in the mHsp70 density upon irradiation on tumor cells is time- and dose-dependent.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: