Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 7 papers out of 7 papers

Glycine-dependent activation of NMDA receptors.

  • Kirstie A Cummings‎ et al.
  • The Journal of general physiology‎
  • 2015‎

N-methyl-d-aspartate (NMDA) receptors are the only neurotransmitter receptors whose activation requires two distinct agonists. Heterotetramers of two GluN1 and two GluN2 subunits, NMDA receptors are broadly distributed in the central nervous system, where they mediate excitatory currents in response to synaptic glutamate release. Pore opening depends on the concurrent presence of glycine, which modulates the amplitude and time course of the glutamate-elicited response. Gating schemes for fully glutamate- and glycine-bound NMDA receptors have been described in sufficient detail to bridge the gap between microscopic and macroscopic receptor behaviors; for several receptor isoforms, these schemes include glutamate-binding steps. We examined currents recorded from cell-attached patches containing one GluN1/GluN2A receptor in the presence of several glycine-site agonists and used kinetic modeling of these data to develop reaction schemes that include explicit glycine-binding steps. Based on the ability to match a series of experimentally observed macroscopic behaviors, we propose a model for activation of the glutamate-bound NMDA receptor by glycine that predicts apparent negative agonist cooperativity and glycine-dependent desensitization in the absence of changes in microscopic binding or desensitization rate constants. These results complete the basic steps of an NMDA receptor reaction scheme for the GluN1/GluN2A isoform and prompt a reevaluation of how glycine controls NMDA receptor activation. We anticipate that our model will provide a useful quantitative instrument to further probe mechanisms and structure-function relationships of NMDA receptors and to better understand the physiological and pathological implications of endogenous fluctuations in extracellular glycine concentrations.


Resident Calmodulin Primes NMDA Receptors for Ca2+-Dependent Inactivation.

  • Gary J Iacobucci‎ et al.
  • Biophysical journal‎
  • 2017‎

N-methyl-d-aspartate (NMDA) receptors are glutamate- and glycine-gated channels that flux Na+ and Ca2+ into postsynaptic neurons during synaptic transmission. The resulting intracellular Ca2+ transient is essential to physiological and pathological processes related to synaptic development, plasticity, and apoptosis. It also engages calmodulin (CaM) to reduce subsequent NMDA receptor activity in a process known as Ca2+-dependent inactivation (CDI). Here, we used whole-cell electrophysiology to measure CDI and computational modeling to dissect the sequence of events that underlies it. With these approaches, we estimate that CaM senses NMDA receptor Ca2+ influx at ∼9 nm from the channel pore. Further, when we controlled the frequency of Ca2+ influx through individual channels, we found that a kinetic model where apoCaM associates with channels before their activation best predicts the measured CDI. These results provide, to our knowledge, novel functional evidence for CaM preassociation to NMDA receptors in living cells. This particular mechanism for autoinhibitory feedback reveals strategies and challenges for Ca2+ regulation in neurons during physiological synaptic activity and disease.


Probing the activation sequence of NMDA receptors with lurcher mutations.

  • Swetha E Murthy‎ et al.
  • The Journal of general physiology‎
  • 2012‎

N-methyl-D-aspartate (NMDA) receptor activation involves a dynamic series of structural rearrangements initiated by glutamate binding to glycine-loaded receptors and culminates with the clearing of the permeation pathway, which allows ionic flux. Along this sequence, three rate-limiting transitions can be quantified with kinetic analyses of single-channel currents, even though the structural determinants of these critical steps are unknown. In inactive receptors, the major permeation barrier resides at the intersection of four M3 transmembrane helices, two from each GluN1 and GluN2 subunits, at the level of the invariant SYTANLAAF sequence, known as the lurcher motif. Because the A7 but not A8 residues in this region display agonist-dependent accessibility to extracellular solutes, they were hypothesized to form the glutamate-sensitive gate. We tested this premise by examining the reaction mechanisms of receptors with substitutions in the lurcher motifs of GluN1 or GluN2A subunits. We found that, consistent with their locations relative to the proposed activation gate, A8Y decreased open-state stability, whereas A7Y dramatically stabilized open states, primarily by preventing gate closure; the equilibrium distribution of A7Y receptors was strongly shifted toward active states and resulted in slower microscopic association and dissociation rate constants for glutamate. In addition, for both A8- and A7-substituted receptors, we noticed patterns of kinetic changes that were specific to GluN1 or GluN2 locations. This may be a first indication that the sequence of discernible kinetic transitions during NMDA receptor activation may reflect subunit-dependent movements of M3 helices. Testing this hypothesis may afford insight into the activation mechanism of NMDA receptors.


Cross-subunit interactions that stabilize open states mediate gating in NMDA receptors.

  • Gary J Iacobucci‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2021‎

NMDA receptors are excitatory channels with critical functions in the physiology of central synapses. Their activation reaction proceeds as a series of kinetically distinguishable, reversible steps, whose structural bases are currently under investigation. Very likely, the earliest steps include glutamate binding to glycine-bound receptors and subsequent constriction of the ligand-binding domain. Later, three short linkers transduce this movement to open the gate by mechanical pulling on transmembrane helices. Here, we used molecular and kinetic simulations and double-mutant cycle analyses to show that a direct chemical interaction between GluN1-I642 (on M3 helix) and GluN2A-L550 (on L1-M1 linker) stabilizes receptors after they have opened and thus represents one of the structural changes that occur late in the activation reaction. This native interaction extends the current decay, and its absence causes deficits in charge transfer by GluN1-I642L, a pathogenic human variant.


Ca2+-Dependent Inactivation of GluN2A and GluN2B NMDA Receptors Occurs by a Common Kinetic Mechanism.

  • Gary J Iacobucci‎ et al.
  • Biophysical journal‎
  • 2020‎

N-Methyl-d-aspartate (NMDA) receptors are Ca2+-permeable channels gated by glutamate and glycine that are essential for central excitatory transmission. Ca2+-dependent inactivation (CDI) is a regulatory feedback mechanism that reduces GluN2A-type NMDA receptor responses in an activity-dependent manner. Although CDI is mediated by calmodulin binding to the constitutive GluN1 subunit, prior studies suggest that GluN2B-type receptors are insensitive to CDI. We examined the mechanism of CDI subtype dependence using electrophysiological recordings of recombinant NMDA receptors expressed in HEK-293 cells. In physiological external Ca2+, we observed robust CDI of whole-cell GluN2A currents (0.42 ± 0.05) but no CDI in GluN2B currents (0.08 ± 0.07). In contrast, when Ca2+ was supplied intracellularly, robust CDI occurred for both GluN2A and GluN2B currents (0.75 ± 0.03 and 0.67 ± 0.02, respectively). To examine how the source of Ca2+ affects CDI, we recorded one-channel Na+ currents to quantify the receptor gating mechanism while simultaneously monitoring ionomycin-induced intracellular Ca2+ elevations with fluorometry. We found that CDI of both GluN2A and GluN2B receptors reflects receptor accumulation in long-lived closed (desensitized) states, suggesting that the observed subtype-dependent differences in macroscopic CDI reflect intrinsic differences in equilibrium open probabilities (Po). We tested this hypothesis by measuring substantial macroscopic CDI, in physiologic conditions, for high Po GluN2B receptors (GluN1A652Y/GluN2B). Together, these results show that Ca2+ flux produces activity-dependent inactivation for both GluN2A and GluN2B receptors and that the extent of CDI varies with channel Po. These results are consistent with CDI as an autoinhibitory feedback mechanism against excessive Ca2+ load during high Po activation.


Residues in the GluN1 C-terminal domain control kinetics and pharmacology of GluN1/GluN3A N-methyl-d-aspartate receptors.

  • Kirstie A Cummings‎ et al.
  • Neuropharmacology‎
  • 2017‎

N-methyl-d-aspartate (NMDA) receptors assembled from GluN1 and GluN3 subunits are unique in that they form glycine-gated excitatory channels that are insensitive to glutamate and NMDA. Alternative splicing of the GluN1 subunit mRNA results in eight variants with regulated expression patterns and post-translational modifications. Here we investigate the role of residues in the GluN1 C-terminal alternatively spliced cassettes in receptor gating and modulation. We measured whole-cell currents from recombinant GluN1/GluN3A receptors expressed in HEK293 cells that differed in the sequence of their GluN1 C-terminal tail. We found that these residues controlled the level of steady-state activity and the degree to which activity was facilitated by zinc and protons. Further, we found that the phosphorylation status of sites specific to certain variants can also modulate channel activity. Based on these results we suggest that GluN1 C-terminal domain splicing may confer cell-specific and activity-dependent regulation onto the level and pharmacologic sensitivity of GluN1/GluN3A currents.


Protons Potentiate GluN1/GluN3A Currents by Attenuating Their Desensitisation.

  • Kirstie A Cummings‎ et al.
  • Scientific reports‎
  • 2016‎

N-methyl-D-aspartate (NMDA) receptors are glutamate- and glycine-gated channels composed of two GluN1 and two GluN2 or/and GluN3 subunits. GluN3A expression is developmentally regulated, and changes in this normal pattern of expression, which occur in several brain disorders, alter synaptic maturation and function by unknown mechanisms. Uniquely within the NMDA receptor family, GluN1/GluN3 receptors produce glycine-gated deeply desensitising currents that are insensitive to glutamate and NMDA; these currents remain poorly characterised and their cellular functions are unknown. Here, we show that extracellular acidification strongly potentiated glycine-gated currents from recombinant GluN1/GluN3A receptors, with half-maximal effect in the physiologic pH range. This was largely due to slower current desensitisation and faster current recovery from desensitisation, and was mediated by residues facing the heterodimer interface of the ligand-binding domain. Consistent with the observed changes in desensitisation kinetics, acidic shifts increased the GluN1/GluN3A equilibrium current and depolarized the membrane in a glycine concentration-dependent manner. These results reveal novel modulatory mechanisms for GluN1/GluN3A receptors that further differentiate them from the canonical glutamatergic GluN1/GluN2 receptors and provide a new and potent pharmacologic tool to assist the detection, identification, and the further study of GluN1/GluN3A currents in native preparations.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: