Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 8 papers out of 8 papers

Properties and functional implications of I (h) in hippocampal area CA3 interneurons.

  • Warren D Anderson‎ et al.
  • Pflugers Archiv : European journal of physiology‎
  • 2011‎

The present study examines the biophysical properties and functional implications of I (h) in hippocampal area CA3 interneurons with somata in strata radiatum and lacunosum-moleculare. Characterization studies showed a small maximum h-conductance (2.6 ± 0.3 nS, n = 11), shallow voltage dependence with a hyperpolarized half-maximal activation (V (1/2) = -91 mV), and kinetics characterized by double-exponential functions. The functional consequences of I (h) were examined with regard to temporal summation and impedance measurements. For temporal summation experiments, 5-pulse mossy fiber input trains were activated. Blocking I (h) with 50 μM ZD7288 resulted in an increase in temporal summation, suggesting that I (h) supports sensitivity of response amplitude to relative input timing. Impedance was assessed by applying sinusoidal current commands. From impedance measurements, we found that I (h) did not confer theta-band resonance, but flattened the impedance-frequency relations instead. Double immunolabeling for hyperpolarization-activated cyclic nucleotide-gated proteins and glutamate decarboxylase 67 suggests that all four subunits are present in GABAergic interneurons from the strata considered for electrophysiological studies. Finally, a model of I (h) was employed in computational analyses to confirm and elaborate upon the contributions of I (h) to impedance and temporal summation.


Functional expression of TrkB receptors on interneurones and pyramidal cells of area CA3 of the rat hippocampus.

  • Ernesto Griego‎ et al.
  • Neuropharmacology‎
  • 2021‎

The dentate gyrus and hippocampal area CA3 region of the mammalian brain contains the highest levels of brain-derived neurotrophic factor (BDNF) and its canonical membrane receptor, tropomyosin-related kinase B (TrkB). Therefore, the present study examines the expression and physiological responses triggered by activation of TrkB on hippocampal area CA3 interneurones and pyramidal cells of the rat hippocampus. Triple immunolabelling for TrkB, glutamate decarboxylase 67, and the calcium-binding proteins parvalbumin, calbindin or calretinin confirms the somatic expression of TrkB in all CA3 sublayers. TrkB-positive interneurones with fast-spiking discharge are restricted to strata oriens and lucidum, whereas regular-spiking interneurones are found in the strata lucidum, radiatum and lacunosum-moleculare. Activation of TrkB receptors with 7,8-dihydroxyflavone (DHF) modulates amplitude and frequency of spontaneous synaptic currents recorded from CA3 interneurones. Furthermore, the isolated excitatory postsynaptic currents (EPSC) of CA3 interneurones evoked by the mossy fibres (MF) or commissural/associational (C/A) axons, show input-specific synaptic potentiation in response to TrkB stimulation. On CA3 pyramidal cells, stimulation with DHF potentiates the MF synaptic transmission and increases the MF-EPSP - spike coupling. The latter exhibits a dramatic increase when picrotoxin is bath perfused after DHF, indicating that local interneurones restrain the excitability mediated by activation of TrkB. Therefore, we propose that release of BDNF on area CA3 reshapes the output of this hippocampal region by simultaneous activation of TrkB on GABAergic interneurones and pyramidal cells.


High affinity group III mGluRs regulate mossy fiber input to CA3 interneurons.

  • Kathleen E Cosgrove‎ et al.
  • Hippocampus‎
  • 2011‎

Stratum lacunosum-moleculare interneurons (L-Mi) in hippocampal area CA3 target the apical dendrite of pyramidal cells providing feedforward inhibition. Here we report that selective activation of group III metabotropic glutamate receptors (mGluRs) 4/8 with L(+)-2-amino-4-phosphnobytyric acid (L-AP4; 10 μM) decreased the probability of glutamate release from the mossy fiber (MF) terminals synapsing onto L-Mi. Consistent with this interpretation, application of L-AP4 in the presence of 3 mM strontium decreased the frequency of asynchronous MF EPSCs in L-Mi. Furthermore, the dose response curve showed that L-AP4 at 400 μM produced no further decrease in MF EPSC amplitude compared with 20 μM L-AP4, indicating the lack of mGluRs 7 at these MF terminals. We also found that one mechanism of mGluRs 4/8-mediated inhibition of release is linked to N-type voltage gated calcium channels at MF terminals. Application of the group III mGluR antagonist MSOP (100 μM) demonstrated that mGluRs 4/8 are neither tonically active nor activated by low and moderate frequencies of activity. However, trains of stimuli to the MF at 20 and 40 Hz delivered during the application of MSOP revealed a relief of inhibition of transmitter release and an increase in the overall probability of action potential firing in the postsynaptic L-Mi. Interestingly, the time to first action potential was significantly shorter in the presence of MSOP, indicating that mGluR 4/8 activation delays L-Mi firing in response to MF activity. Taken together, our data demonstrate that the timing and probability of action potentials in L-Mi evoked by MF synaptic input is regulated by the activation of presynaptic high affinity group III mGluRs.


Quantitative morphometry of electrophysiologically identified CA3b interneurons reveals robust local geometry and distinct cell classes.

  • Giorgio A Ascoli‎ et al.
  • The Journal of comparative neurology‎
  • 2009‎

The morphological and electrophysiological diversity of inhibitory cells in hippocampal area CA3 may underlie specific computational roles and is not yet fully elucidated. In particular, interneurons with somata in strata radiatum (R) and lacunosum-moleculare (L-M) receive converging stimulation from the dentate gyrus and entorhinal cortex as well as within CA3. Although these cells express different forms of synaptic plasticity, their axonal trees and connectivity are still largely unknown. We investigated the branching and spatial patterns, plus the membrane and synaptic properties, of rat CA3b R and L-M interneurons digitally reconstructed after intracellular labeling. We found considerable variability within but no difference between the two layers, and no correlation between morphological and biophysical properties. Nevertheless, two cell types were identified based on the number of dendritic bifurcations, with significantly different anatomical and electrophysiological features. Axons generally branched an order of magnitude more than dendrites. However, interneurons on both sides of the R/L-M boundary revealed surprisingly modular axodendritic arborizations with consistently uniform local branch geometry. Both axons and dendrites followed a lamellar organization, and axons displayed a spatial preference toward the fissure. Moreover, only a small fraction of the axonal arbor extended to the outer portion of the invaded volume, and tended to return toward the proximal region. In contrast, dendritic trees demonstrated more limited but isotropic volume occupancy. These results suggest a role of predominantly local feedforward and lateral inhibitory control for both R and L-M interneurons. Such a role may be essential to balance the extensive recurrent excitation of area CA3 underlying hippocampal autoassociative memory function.


TrkB-mediated activation of the phosphatidylinositol-3-kinase/Akt cascade reduces the damage inflicted by oxygen-glucose deprivation in area CA3 of the rat hippocampus.

  • Carolina Tecuatl‎ et al.
  • The European journal of neuroscience‎
  • 2018‎

The selective vulnerability of hippocampal area CA1 to ischemia-induced injury is a well-known phenomenon. However, the cellular mechanisms that confer resistance to area CA3 against ischemic damage remain elusive. Here, we show that oxygen-glucose deprivation-reperfusion (OGD-RP), an in vitro model that mimic the pathological conditions of the ischemic stroke, increases the phosphorylation level of tropomyosin receptor kinase B (TrkB) in area CA3. Slices preincubated with brain-derived neurotrophic factor (BDNF) or 7,8-dihydroxyflavone (7,8-DHF) exhibited reduced depression of the electrical activity triggered by OGD-RP. Consistently, blockade of TrkB suppressed the resistance of area CA3 to OGD-RP. The protective effect of TrkB activation was limited to area CA3, as OGD-RP caused permanent suppression of CA1 responses. At the cellular level, TrkB activation leads to phosphorylation of the accessory proteins SHC and Gab as well as the serine/threonine kinase Akt, members of the phosphoinositide 3-kinase/Akt (PI-3-K/Akt) pathway, a cascade involved in cell survival. Hence, acute slices pretreated with the Akt antagonist MK2206 in combination with BDNF lost the capability to resist the damage inflicted with OGD-RP. Consistently, with these results, CA3 pyramidal cells exhibited reduced propidium iodide uptake and caspase-3 activity in slices pretreated with BDNF and exposed to OGD-RP. We propose that PI-3-K/Akt downstream activation mediated by TrkB represents an endogenous mechanism responsible for the resistance of area CA3 to ischemic damage.


A computer model of unitary responses from associational/commissural and perforant path synapses in hippocampal CA3 pyramidal cells.

  • John L Baker‎ et al.
  • Journal of computational neuroscience‎
  • 2011‎

Despite the central position of CA3 pyramidal cells in the hippocampal circuit, the experimental investigation of their synaptic properties has been limited. Recent slice experiments from adult rats characterized AMPA and NMDA receptor unitary synaptic responses in CA3b pyramidal cells. Here, excitatory synaptic activation is modeled to infer biophysical parameters, aid analysis interpretation, explore mechanisms, and formulate predictions by contrasting simulated somatic recordings with experimental data. Reconstructed CA3b pyramidal cells from the public repository NeuroMorpho.Org were used to allow for cell-specific morphological variation. For each cell, synaptic responses were simulated for perforant pathway and associational/commissural synapses. Means and variability for peak amplitude, time-to-peak, and half-height width in these responses were compared with equivalent statistics from experimental recordings. Synaptic responses mediated by AMPA receptors are best fit with properties typical of previously characterized glutamatergic receptors where perforant path synapses have conductances twice that of associational/commissural synapses (0.9 vs. 0.5 nS) and more rapid peak times (1.0 vs. 3.3 ms). Reanalysis of passive-cell experimental traces using the model shows no evidence of a CA1-like increase of associational/commissural AMPA receptor conductance with increasing distance from the soma. Synaptic responses mediated by NMDA receptors are best fit with rapid kinetics, suggestive of NR2A subunits as expected in mature animals. Predictions were made for passive-cell current clamp recordings, combined AMPA and NMDA receptor responses, and local dendritic depolarization in response to unitary stimulations. Models of synaptic responses in active cells suggest altered axial resistivity and the presence of synaptically activated potassium channels in spines.


Coincidence detection of convergent perforant path and mossy fibre inputs by CA3 interneurons.

  • Eduardo Calixto‎ et al.
  • The Journal of physiology‎
  • 2008‎

We performed whole-cell recordings from CA3 s. radiatum (R) and s. lacunosum-moleculare (L-M) interneurons in hippocampal slices to examine the temporal aspects of summation of converging perforant path (PP) and mossy fibre (MF) inputs. PP EPSPs were evoked from the s. lacunosum-moleculare in area CA1. MF EPSPs were evoked from the medial extent of the suprapyramidal blade of the dentate gyrus. Summation was strongly supralinear when examining PP EPSP with MF EPSP in a heterosynaptic pair at the 10 ms ISI, and linear to sublinear at longer ISIs. This pattern of nonlinearities suggests that R and L-M interneurons act as coincidence detectors for input from PP and MF. Summation at all ISIs was linear in voltage clamp mode demonstrating that nonlinearities were generated by postsynaptic voltage-dependent conductances. Supralinearity was not detected when the first EPSP in the pair was replaced by a simulated EPSP injected into the soma, suggesting that the conductances underlying the EPSP boosting were located in distal dendrites. Supralinearity was selectively eliminated with either Ni2+ (30 microm), mibefradil (10 microm) or nimodipine (15 microm), but was unaffected by QX-314. This pharmacological profile indicates that supralinearity is due to recruitment of dendritic T-type Ca2+channels by the first subthreshold EPSP in the pair. Results with the hyperpolarization-activated (Ih) channel blocker ZD 7288 (50 microm) revealed that Ih restricted the time course of supralinearity for coincidently summed EPSPs, and promoted linear to sublinear summation for asynchronous EPSPs. We conclude that coincidence detection results from the counterbalanced activation of T-type Ca2+ channels and inactivation of Ih.


Oxygen-Glucose Deprivation Differentially Affects Neocortical Pyramidal Neurons and Parvalbumin-Positive Interneurons.

  • Nadya Povysheva‎ et al.
  • Neuroscience‎
  • 2019‎

Stroke is a devastating brain disorder. The pathophysiology of stroke is associated with an impaired excitation-inhibition balance in the area that surrounds the infarct core after the insult, the peri-infarct zone. Here we exposed slices from adult mouse prefrontal cortex to oxygen-glucose deprivation and reoxygenation (OGD-RO) to study ischemia-induced changes in the activity of excitatory pyramidal neurons and inhibitory parvalbumin (PV)-positive interneurons. We found that during current-clamp recordings, PV-positive interneurons were more vulnerable to OGD-RO than pyramidal neurons as indicated by the lower percentage of recovery of PV-positive interneurons. However, neither the amplitude of OGD-induced depolarization observed in current-clamp mode nor the OGD-associated current observed in voltage-clamp mode differed between the two cell types. Large amplitude, presumably action-potential dependent, spontaneous postsynaptic inhibitory currents recorded from pyramidal neurons were less frequent after OGD-RO than in control condition. Disynaptic inhibitory postsynaptic currents (dIPSCs) in pyramidal neurons produced predominantly by PV-positive interneurons were reduced by OGD-RO. Following OGD-RO, dendrites of PV-positive interneurons exhibited more pathological beading than those of pyramidal neurons. Our data support the hypothesis that the differential vulnerability to ischemia-like conditions of excitatory and inhibitory neurons leads to the altered excitation-inhibition balance associated with stroke pathophysiology.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: