Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 48 papers

Penguins reduced olfactory receptor genes common to other waterbirds.

  • Qin Lu‎ et al.
  • Scientific reports‎
  • 2016‎

The sense of smell, or olfaction, is fundamental in the life of animals. However, penguins (Aves: Sphenisciformes) possess relatively small olfactory bulbs compared with most other waterbirds such as Procellariiformes and Gaviiformes. To test whether penguins have a reduced reliance on olfaction, we analyzed the draft genome sequences of the two penguins, which diverged at the origin of the order Sphenisciformes; we also examined six closely related species with available genomes, and identified 29 one-to-one orthologous olfactory receptor genes (i.e. ORs) that are putatively functionally conserved and important across the eight birds. To survey the 29 one-to-one orthologous ORs in penguins and their relatives, we newly generated 34 sequences that are missing from the draft genomes. Through the analysis of totaling 378 OR sequences, we found that, of these functionally important ORs common to other waterbirds, penguins have a significantly greater percentage of OR pseudogenes than other waterbirds, suggesting a reduction of olfactory capability. The penguin-specific reduction of olfactory capability arose in the common ancestor of penguins between 23 and 60 Ma, which may have resulted from the aquatic specializations for underwater vision. Our study provides genetic evidence for a possible reduction of reliance on olfaction in penguins.


Novel avian influenza A (H5N6) viruses isolated in migratory waterfowl before the first human case reported in China, 2014.

  • Yuhai Bi‎ et al.
  • Scientific reports‎
  • 2016‎

In May 2014, China formally confirmed the first human infection with the novel H5N6 avian influenza virus (AIV) in Sichuan Province. Before the first human case was reported, surveillance of AIVs in wild birds resulted in the detection of three H5N6 viruses in faecal samples from migratory waterfowl in Chenhu wetlands, Hubei Province, China. Genetic and phylogenetic analyses revealed that these three novel viruses were closely related to the H5N6 virus that has caused human infections in China since 2014. A Bayesian phylogenetic reconstruction of all eight segments suggests multiple reassortment events in the evolution of these viruses. The hemagglutinin (HA) and neuraminidase (NA) originated from the H5N2 and H6N6 AIVs, respectively, whereas all six internal genes were derived from avian H5N1 viruses. The reassortant may have occurred in eastern China during 2012-2013. A phylogeographic analysis of the HA and NA genes traced the viruses to southern China, from where they spread to other areas via eastern China. A receptor-binding test showed that H5N6 viruses from migratory waterfowl had human-type receptor-binding activity, suggesting a potential for transmission to humans. These data suggest that migratory waterfowl may play a role in the dissemination of novel H5N6 viruses.


Dynamic transcriptome profiling towards understanding the morphogenesis and development of diverse feather in domestic duck.

  • Jing Yang‎ et al.
  • BMC genomics‎
  • 2018‎

Feathers with complex and fine structure are hallmark avian integument appendages, which have contributed significantly to the survival and breeding for birds. Here, we aimed to explore the differentiation, morphogenesis and development of diverse feathers in the domestic duck.


Explosive radiation and spatial expansion across the cold environments of the Old World in an avian family.

  • Baoyan Liu‎ et al.
  • Ecology and evolution‎
  • 2017‎

Our objective was to elucidate the biogeography and speciation patterns in an entire avian family, which shows a complex pattern of overlapping and nonoverlapping geographical distributions, and much variation in plumage, but less in size and structure. We estimated the phylogeny and divergence times for all of the world's species of Prunella based on multiple genetic loci, and analyzed morphometric divergence and biogeographical history. The common ancestor of Prunella was present in the Sino-Himalayan Mountains or these mountains and Central Asia-Mongolia more than 9 million years ago (mya), but a burst of speciations took place during the mid-Pliocene to early Pleistocene. The relationships among the six primary lineages resulting from that differentiation are unresolved, probably because of the rapid radiation. A general increase in sympatry with increasing time since divergence is evident. With one exception, species in clades younger than c. 3.7 my are allopatric. Species that are widely sympatric, including the most recently diverged (2.4 mya) sympatric sisters, are generally more divergent in size/structure than allo-/parapatric close relatives. The distributional pattern and inferred ages suggest divergence in allopatry and substantial waiting time until secondary contact, likely due to competitive exclusion. All sympatrically breeding species are ecologically segregated, as suggested by differences in size/structure and habitat. Colonizations of new areas were facilitated during glacial periods, followed by fragmentation during interglacials-contrary to the usual view that glacial periods resulted mainly in fragmentations.


The survey of H5N1 flu virus in wild birds in 14 Provinces of China from 2004 to 2007.

  • Zheng Kou‎ et al.
  • PloS one‎
  • 2009‎

The highly pathogenic H5N1 avian influenza emerged in the year 1996 in Asia, and has spread to Europe and Africa recently. At present, effective monitoring and data analysis of H5N1 are not sufficient in Chinese mainland.


H5N1 avian influenza re-emergence of Lake Qinghai: phylogenetic and antigenic analyses of the newly isolated viruses and roles of migratory birds in virus circulation.

  • Guihua Wang‎ et al.
  • The Journal of general virology‎
  • 2008‎

Highly pathogenic avian influenza H5N1 virus has swept west across the globe and caused serious debates on the roles of migratory birds in virus circulation since the first large-scale outbreak in migratory birds of Lake Qinghai, 2005. In May 2006, another outbreak struck Lake Qinghai and six novel strains were isolated. To elucidate these QH06 viruses, the six isolates were subjected to whole-genome sequencing. Phylogenetic analyses show that QH06 viruses are derived from the lineages of Lake Qinghai, 2005. Five of the six novel isolates are adjacent to the strain A/Cygnus olor/Croatia/1/05, and the last one is related to the strain A/duck/Novosibirsk/02/05, an isolate of the flyway. Antigenic analyses suggest that QH06 and QH05 viruses are similar to each other. These findings implicate that QH06 viruses of Lake Qinghai may travel back via migratory birds, though not ruling out the possibility of local circulation of viruses of Lake Qinghai.


Evolution of beak morphology in the Ground Tit revealed by comparative transcriptomics.

  • Yalin Cheng‎ et al.
  • Frontiers in zoology‎
  • 2017‎

Beak morphology exhibits considerable adaptive plasticity in birds, which results in highly varied or specialized forms in response to variations in ecology and life history. As the only parid species endemic to the Qinghai-Tibet Plateau, the Ground Tit (Parus humilis) has evolved a distinctly long and curved beak from other parids. An integration of morphometrics, phylogenetics, transcriptomics and embryology allows us to address the evolutionary and developmental mechanisms of the adaptive beak structure observed in the Ground Tit.


Parallel genomic responses to historical climate change and high elevation in East Asian songbirds.

  • Yalin Cheng‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2021‎

Parallel evolution can be expected among closely related taxa exposed to similar selective pressures. However, parallelism is typically stronger at the phenotypic level, while genetic solutions to achieve these phenotypic similarities may differ. For polygenic traits, the availability of standing genetic variation (i.e., heterozygosity) may influence such genetic nonparallelism. Here, we examine the extent to which high-elevation adaptation is parallel-and whether the level of parallelism is affected by heterozygosity-by analyzing genomes of 19 Paridae species distributed across East Asia with a dramatic east-west elevation gradient. We find that western highlands endemic parids have consistently lower levels of heterozygosity-likely the result of late-Pleistocene demographic contraction-than do parids found exclusively in eastern lowlands, which remained unglaciated during the late Pleistocene. Three widespread species (east to west) have high levels of heterozygosity similar to that observed in eastern species, although their western populations are less variable than eastern ones. Comparing genomic responses to extreme environments of the Qinghai-Tibet Plateau, we find that the most differentiated genomic regions between each high-elevation taxon and its low-elevation relative are significantly enriched for genes potentially related to the oxygen transport cascade and/or thermogenesis. Despite no parallelism at particular genes, high similarity in gene function is found among comparisons. Furthermore, parallelism is not higher in more heterozygous widespread parids than in highland endemics. Thus, in East Asian parids, parallel functional response to extreme elevation appears to rely on different genes, with differences in heterozygosity having no effect on the degree of genetic parallelism.


Physiological and genetic convergence supports hypoxia resistance in high-altitude songbirds.

  • Ying Xiong‎ et al.
  • PLoS genetics‎
  • 2020‎

Skeletal muscle plays a central role in regulating glucose uptake and body metabolism; however, highland hypoxia is a severe challenge to aerobic metabolism in small endotherms. Therefore, understanding the physiological and genetic convergence of muscle hypoxia tolerance has a potential broad range of medical implications. Here we report and experimentally validate a common physiological mechanism across multiple high-altitude songbirds that improvement in insulin sensitivity contributes to glucose homeostasis, low oxygen consumption, and relative activity, and thus increases body weight. By contrast, low-altitude songbirds exhibit muscle loss, glucose intolerance, and increase energy expenditures under hypoxia. This adaptive mechanism is attributable to convergent missense mutations in the BNIP3L gene, and METTL8 gene that activates MEF2C expression in highlanders, which in turn increases hypoxia tolerance. Together, our findings from wild high-altitude songbirds suggest convergent physiological and genetic mechanisms of skeletal muscle in hypoxia resistance, which highlights the potentially medical implications of hypoxia-related metabolic diseases.


Phylogenomics of white-eyes, a 'great speciator', reveals Indonesian archipelago as the center of lineage diversity.

  • Chyi Yin Gwee‎ et al.
  • eLife‎
  • 2020‎

Archipelagoes serve as important 'natural laboratories' which facilitate the study of island radiations and contribute to the understanding of evolutionary processes. The white-eye genus Zosterops is a classical example of a 'great speciator', comprising c. 100 species from across the Old World, most of them insular. We achieved an extensive geographic DNA sampling of Zosterops by using historical specimens and recently collected samples. Using over 700 genome-wide loci in conjunction with coalescent species tree methods and gene flow detection approaches, we untangled the reticulated evolutionary history of Zosterops, which comprises three main clades centered in Indo-Africa, Asia, and Australasia, respectively. Genetic introgression between species permeates the Zosterops phylogeny, regardless of how distantly related species are. Crucially, we identified the Indonesian archipelago, and specifically Borneo, as the major center of diversity and the only area where all three main clades overlap, attesting to the evolutionary importance of this region.


Orthologous microsatellites, transposable elements, and DNA deletions correlate with generation time and body mass in neoavian birds.

  • Yanzhu Ji‎ et al.
  • Science advances‎
  • 2022‎

The rate of mutation accumulation in germline cells can be affected by cell replication and/or DNA damage, which are further related to life history traits such as generation time and body mass. Leveraging the existing datasets of 233 neoavian bird species, here, we investigated whether generation time and body mass contribute to the interspecific variation of orthologous microsatellite length, transposable element (TE) length, and deletion length and how these genomic attributes affect genome sizes. In nonpasserines, we found that generation time is correlated to both orthologous microsatellite length and TE length, and body mass is negatively correlated to DNA deletions. These patterns are less pronounced in passerines. In all species, we found that DNA deletions relate to genome size similarly as TE length, suggesting a role of body mass dynamics in genome evolution. Our results indicate that generation time and body mass shape the evolution of genomic attributes in neoavian birds.


A multi-faceted comparative perspective on elevational beta-diversity: the patterns and their causes.

  • Yuanbao Du‎ et al.
  • Proceedings. Biological sciences‎
  • 2021‎

The observed patterns and underlying mechanisms of elevational beta-diversity have been explored intensively, but multi-dimensional comparative studies remain scarce. Herein, across distinct beta-diversity components, dimensions and species groups, we designed a multi-faceted comparative framework aiming to reveal the general rules in the observed patterns and underlying causes of elevational beta-diversity. We have found that: first, the turnover process dominated altitudinal patterns of species beta-diversity (βsim > βsne), whereas the nestedness process appeared relatively more important for elevational trait dissimilarity (βfuncsim < βfuncsne); second, the taxonomic turnover was relative higher than its phylogenetic and functional analogues (βsim > βphylosim/βfuncsim), conversely, nestedness-resultant trait dissimilarity tended to be higher than the taxonomic and phylogenetic measures (βfuncsne > βsne/βphylosne); and third, as elevational distance increased, the contradicting dynamics of environmental filtering and limiting similarity have jointly led the elevational patterns of beta-diversity, especially at taxonomic dimension. Based on these findings, we infer that the species turnover among phylogenetic relatives sharing similar functional attributes appears to be the main cause of shaping the altitudinal patterns of multi-dimensional beta-diversity. Owing to the methodological limitation in the randomization approach, currently, it remains extremely challenging to distinguish the influence of the neutral process from the offset between opposing niche-based processes. Despite the complexities and uncertainties during species assembling, with a multi-dimensional comparative perspective, this work offers us several important commonalities of elevational beta-diversity dynamics.


Gene flow and an anomaly zone complicate phylogenomic inference in a rapidly radiated avian family (Prunellidae).

  • Zhiyong Jiang‎ et al.
  • BMC biology‎
  • 2024‎

Resolving the phylogeny of rapidly radiating lineages presents a challenge when building the Tree of Life. An Old World avian family Prunellidae (Accentors) comprises twelve species that rapidly diversified at the Pliocene-Pleistocene boundary.


Comparative mitochondrial genomics and phylogenetic relationships of the Crossoptilon species (Phasianidae, Galliformes).

  • Xuejuan Li‎ et al.
  • BMC genomics‎
  • 2015‎

Phasianidae is a family of Galliformes containing 38 genera and approximately 138 species, which is grouped into two tribes based on their morphological features, the Pheasants and Partridges. Several studies have attempted to reconstruct the phylogenetic relationships of the Phasianidae, but many questions still remain unaddressed, such as the taxonomic status and phylogenetic relationships among Crossoptilon species. The mitochondrial genome (mitogenome) has been extensively used to infer avian genetic diversification with reasonable resolution. Here, we sequenced the entire mitogenomes of three Crossoptilon species (C. harmani, C. mantchuricum and C. crossoptilon) to investigate their evolutionary relationship among Crossoptilon species.


A complete analysis of HA and NA genes of influenza A viruses.

  • Weifeng Shi‎ et al.
  • PloS one‎
  • 2010‎

More and more nucleotide sequences of type A influenza virus are available in public databases. Although these sequences have been the focus of many molecular epidemiological and phylogenetic analyses, most studies only deal with a few representative sequences. In this paper, we present a complete analysis of all Haemagglutinin (HA) and Neuraminidase (NA) gene sequences available to allow large scale analyses of the evolution and epidemiology of type A influenza.


Past hybridization between two East Asian long-tailed tits (Aegithalos bonvaloti and A. fuliginosus).

  • Wenjuan Wang‎ et al.
  • Frontiers in zoology‎
  • 2014‎

Incomplete lineage sorting and hybridization are two major nonexclusive causes of haplotype sharing between species. Distinguishing between these two processes is notoriously difficult as they can generate similar genetic signatures. Previous studies revealed that the mitochondrial DNA (mtDNA) differentiation between two East Asian long-tailed tits (Aegithalos bonvaloti and A. fuliginosus) was extremely low, even lower than intraspecific differentiation in some other long-tailed tits. Using a combination of multilocus and coalescent analyses, we explored the causes of the anomalous lack of mtDNA differentiation between the two species.


Can Mitogenomes of the Northern Wheatear (Oenanthe oenanthe) Reconstruct Its Phylogeography and Reveal the Origin of Migrant Birds?

  • Erjia Wang‎ et al.
  • Scientific reports‎
  • 2020‎

The Northern Wheatear (Oenanthe oenanthe, including the nominate and the two subspecies O. o. leucorhoa and O. o. libanotica) and the Seebohm's Wheatear (Oenanthe seebohmi) are today regarded as two distinct species. Before, all four taxa were regarded as four subspecies of the Northern Wheatear. Their classification has exclusively been based on ecological and morphological traits, while their molecular characterization is still missing. With this study, we used next-generation sequencing to assemble 117 complete mitochondrial genomes covering O. o. oenanthe, O. o. leucorhoa and O. seebohmi. We compared the resolution power of each individual mitochondrial marker and concatenated marker sets to reconstruct the phylogeny and estimate speciation times of three taxa. Moreover, we tried to identify the origin of migratory wheatears caught on Helgoland (Germany) and on Crete (Greece). Mitogenome analysis revealed two different ancient lineages that separated around 400,000 years ago. Both lineages consisted of a mix of subspecies and species. The phylogenetic trees, as well as haplotype networks are incongruent with the present morphology-based classification. Mitogenome could not distinguish these presumed species. The genetic panmixia among present populations and taxa might be the consequence of mitochondrial introgression between ancient wheatear populations.


Ecological and evolutionary constraints on regional avifauna of passerines in China.

  • Tianlong Cai‎ et al.
  • Current zoology‎
  • 2021‎

Strong correlations between species diversity and climate have been widely observed, but the mechanism underlying this relationship is unclear. Here, we explored the causes of the richness-climate relationships among passerine birds in China by integrating tropical conservatism and diversification rate hypotheses using path models. We found that assemblages with higher species richness southwest of the Salween-Mekong-Pearl River Divide are phylogenetically overdispersed and have shorter mean root distances (MRDs), while species-rich regions northeast of this divide (e.g., north Hengduan Mountains-south Qinling Mountains) are phylogenetically clustered and have longer MRDs. The results of the path analyses showed that the direct effect of climatic factors on species richness was stronger than their indirect effects on species richness via phylogenetic relatedness, indicating that neither tropical conservatism nor diversification rate hypotheses can well explain the richness-climate relationship among passerines in China. However, when path analyses were conducted within subregions separately, we found that the tropical conservatism hypothesis was well supported in the southwestern Salween-Mekong-Pearl River Divide, while the diversification rate hypothesis could explain the richness-climate relationship well in the northeastern divide. We conclude that the diversity patterns of passerines in different subregions of the Eastern Himalayas-Mountains of Southwest China may be shaped by different evolutionary processes related to geological and climatic histories, which explains why the tropical conservatism or diversification rate hypothesis alone cannot fully explain the richness-climate relationships.


Factors determining species richness patterns of breeding birds along an elevational gradient in the Horn of Africa region.

  • Ahunim Fenitie Abebe‎ et al.
  • Ecology and evolution‎
  • 2019‎

To document the species richness patterns of breeding birds along elevational gradients and explore its drivers in the Horn of Africa region.


Highly Pathogenic Avian Influenza A(H5N1) Virus Struck Migratory Birds in China in 2015.

  • Yuhai Bi‎ et al.
  • Scientific reports‎
  • 2015‎

Approximately 100 migratory birds, including whooper swans and pochards, were found dead in the Sanmenxia Reservoir Area of China during January 2015. The causative agent behind this outbreak was identified as H5N1 highly pathogenic avian influenza virus (HPAIV). Genetic and phylogenetic analyses revealed that this Sanmenxia H5N1 virus was a novel reassortant, possessing a Clade 2.3.2.1c HA gene and a H9N2-derived PB2 gene. Sanmenxia Clade 2.3.2.1c-like H5N1 viruses possess the closest genetic identity to A/Alberta/01/2014 (H5N1), which recently caused a fatal respiratory infection in Canada with signs of meningoencephalitis, a highly unusual symptom with influenza infections in humans. Furthermore, this virus was shown to be highly pathogenic to both birds and mammals, and demonstrate tropism for the nervous system. Due to the geographical location of Sanmenxia, these novel H5N1 viruses also have the potential to be imported to other regions through the migration of wild birds, similar to the H5N1 outbreak amongst migratory birds in Qinghai Lake during 2005. Therefore, further investigation and monitoring is required to prevent this novel reassortant virus from becoming a new threat to public health.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: