Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 11 papers out of 11 papers

The inositol 5-phosphatase SHIP2 regulates endocytic clathrin-coated pit dynamics.

  • Fubito Nakatsu‎ et al.
  • The Journal of cell biology‎
  • 2010‎

Phosphatidylinositol (PI) 4,5-bisphosphate (PI(4,5)P(2)) and its phosphorylated product PI 3,4,5-triphosphate (PI(3,4,5)P(3)) are two major phosphoinositides concentrated at the plasma membrane. Their levels, which are tightly controlled by kinases, phospholipases, and phosphatases, regulate a variety of cellular functions, including clathrin-mediated endocytosis and receptor signaling. In this study, we show that the inositol 5-phosphatase SHIP2, a negative regulator of PI(3,4,5)P(3)-dependent signaling, also negatively regulates PI(4,5)P(2) levels and is concentrated at endocytic clathrin-coated pits (CCPs) via interactions with the scaffold protein intersectin. SHIP2 is recruited early at the pits and dissociates before fission. Both knockdown of SHIP2 expression and acute production of PI(3,4,5)P(3) shorten CCP lifetime by enhancing the rate of pit maturation, which is consistent with a positive role of both SHIP2 substrates, PI(4,5)P(2) and PI(3,4,5)P(3), on coat assembly. Because SHIP2 is a negative regulator of insulin signaling, our findings suggest the importance of the phosphoinositide metabolism at CCPs in the regulation of insulin signal output.


The machinery at endoplasmic reticulum-plasma membrane contact sites contributes to spatial regulation of multiple Legionella effector proteins.

  • Andree Hubber‎ et al.
  • PLoS pathogens‎
  • 2014‎

The Dot/Icm system of the intracellular pathogen Legionella pneumophila has the capacity to deliver over 270 effector proteins into host cells during infection. Important questions remain as to spatial and temporal mechanisms used to regulate such a large array of virulence determinants after they have been delivered into host cells. Here we investigated several L. pneumophila effector proteins that contain a conserved phosphatidylinositol-4-phosphate (PI4P)-binding domain first described in the effector DrrA (SidM). This PI4P binding domain was essential for the localization of effectors to the early L. pneumophila-containing vacuole (LCV), and DrrA-mediated recruitment of Rab1 to the LCV required PI4P-binding activity. It was found that the host cell machinery that regulates sites of contact between the plasma membrane (PM) and the endoplasmic reticulum (ER) modulates PI4P dynamics on the LCV to control localization of these effectors. Specifically, phosphatidylinositol-4-kinase IIIα (PI4KIIIα) was important for generating a PI4P signature that enabled L. pneumophila effectors to localize to the PM-derived vacuole, and the ER-associated phosphatase Sac1 was involved in metabolizing the PI4P on the vacuole to promote the dissociation of effectors. A defect in L. pneumophila replication in macrophages deficient in PI4KIIIα was observed, highlighting that a PM-derived PI4P signature is critical for biogenesis of a vacuole that supports intracellular multiplication of L. pneumophila. These data indicate that PI4P metabolism by enzymes controlling PM-ER contact sites regulate the association of L. pneumophila effectors to coordinate early stages of vacuole biogenesis.


A role of OCRL in clathrin-coated pit dynamics and uncoating revealed by studies of Lowe syndrome cells.

  • Ramiro Nández‎ et al.
  • eLife‎
  • 2014‎

Mutations in the inositol 5-phosphatase OCRL cause Lowe syndrome and Dent's disease. Although OCRL, a direct clathrin interactor, is recruited to late-stage clathrin-coated pits, clinical manifestations have been primarily attributed to intracellular sorting defects. Here we show that OCRL loss in Lowe syndrome patient fibroblasts impacts clathrin-mediated endocytosis and results in an endocytic defect. These cells exhibit an accumulation of clathrin-coated vesicles and an increase in U-shaped clathrin-coated pits, which may result from sequestration of coat components on uncoated vesicles. Endocytic vesicles that fail to lose their coat nucleate the majority of the numerous actin comets present in patient cells. SNX9, an adaptor that couples late-stage endocytic coated pits to actin polymerization and which we found to bind OCRL directly, remains associated with such vesicles. These results indicate that OCRL acts as an uncoating factor and that defects in clathrin-mediated endocytosis likely contribute to pathology in patients with OCRL mutations.


Defective function of GABA-containing synaptic vesicles in mice lacking the AP-3B clathrin adaptor.

  • Fubito Nakatsu‎ et al.
  • The Journal of cell biology‎
  • 2004‎

AP-3 is a member of the adaptor protein (AP) complex family that regulates the vesicular transport of cargo proteins in the secretory and endocytic pathways. There are two isoforms of AP-3: the ubiquitously expressed AP-3A and the neuron-specific AP-3B. Although the physiological role of AP-3A has recently been elucidated, that of AP-3B remains unsolved. To address this question, we generated mice lacking mu3B, a subunit of AP-3B. mu3B-/- mice suffered from spontaneous epileptic seizures. Morphological abnormalities were observed at synapses in these mice. Biochemical studies demonstrated the impairment of gamma-aminobutyric acid (GABA) release because of, at least in part, the reduction of vesicular GABA transporter in mu3B-/- mice. This facilitated the induction of long-term potentiation in the hippocampus and the abnormal propagation of neuronal excitability via the temporoammonic pathway. Thus, AP-3B plays a critical role in the normal formation and function of a subset of synaptic vesicles. This work adds a new aspect to the pathogenesis of epilepsy.


PI4P/PS countertransport by ORP10 at ER-endosome membrane contact sites regulates endosome fission.

  • Asami Kawasaki‎ et al.
  • The Journal of cell biology‎
  • 2022‎

Membrane contact sites (MCSs) serve as a zone for nonvesicular lipid transport by oxysterol-binding protein (OSBP)-related proteins (ORPs). ORPs mediate lipid countertransport, in which two distinct lipids are transported counterdirectionally. How such lipid countertransport controls specific biological functions, however, remains elusive. We report that lipid countertransport by ORP10 at ER-endosome MCSs regulates retrograde membrane trafficking. ORP10, together with ORP9 and VAP, formed ER-endosome MCSs in a phosphatidylinositol 4-phosphate (PI4P)-dependent manner. ORP10 exhibited a lipid exchange activity toward its ligands, PI4P and phosphatidylserine (PS), between liposomes in vitro, and between the ER and endosomes in situ. Cell biological analysis demonstrated that ORP10 supplies a pool of PS from the ER, in exchange for PI4P, to endosomes where the PS-binding protein EHD1 is recruited to facilitate endosome fission. Our study highlights a novel lipid exchange at ER-endosome MCSs as a nonenzymatic PI4P-to-PS conversion mechanism that organizes membrane remodeling during retrograde membrane trafficking.


Coordinated Movement of Vesicles and Actin Bundles during Nerve Growth Revealed by Superresolution Microscopy.

  • Motohiro Nozumi‎ et al.
  • Cell reports‎
  • 2017‎

The growth cone is an essential structure for nerve growth. Although its membrane and cytoskeleton are likely to interact coordinately during nerve growth, the mechanisms are unknown due to their close proximity. Here, we used superresolution microscopy to simultaneously observe vesicles and F-actin in growth cones. We identified a novel vesicular generation mechanism that is independent of clathrin and dependent on endophilin-3- and dynamin-1 and that occurs proximal to the leading edge simultaneously with fascin-1-dependent F-actin bundling. In contrast to conventional clathrin-dependent endocytosis, which occurs distal from the leading edge at the basal surfaces of growth cones, this mechanism was distinctly observed at the apical surface using 3D imaging and was involved in mediating axon growth. Reduced endophilin or fascin inhibited this endocytic mechanism. These results suggest that, at the leading edge, vesicles are coordinately generated and transported with actin bundling during nerve growth.


Plasticity of PI4KIIIα interactions at the plasma membrane.

  • Jeeyun Chung‎ et al.
  • EMBO reports‎
  • 2015‎

Plasma membrane PI4P is an important direct regulator of many processes that occur at the plasma membrane and also a biosynthetic precursor of PI(4,5)P2 and its downstream metabolites. The majority of this PI4P pool is synthesized by an evolutionarily conserved complex, which has as its core the PI 4-kinase PI4KIIIα (Stt4 in yeast) and also comprises TTC7 (Ypp1 in yeast) and the peripheral plasma membrane protein EFR3. While EFR3 has been implicated in the recruitment of PI4KIIIα via TTC7, the plasma membrane protein Sfk1 was also shown to participate in this targeting and activity in yeast. Here, we identify a member of the TMEM150 family as a functional homologue of Sfk1 in mammalian cells and demonstrate a role for this protein in the homeostatic regulation of PI(4,5)P2 at the plasma membrane. We also show that the presence of TMEM150A strongly reduces the association of TTC7 with the EFR3-PI4KIIIα complex, without impairing the localization of PI4KIIIα at the plasma membrane. Collectively our results suggest a plasticity of the molecular interactions that control PI4KIIIα localization and function.


PtdIns4P synthesis by PI4KIIIα at the plasma membrane and its impact on plasma membrane identity.

  • Fubito Nakatsu‎ et al.
  • The Journal of cell biology‎
  • 2012‎

Plasma membrane phosphatidylinositol (PI) 4-phosphate (PtdIns4P) has critical functions via both direct interactions and metabolic conversion to PI 4,5-bisphosphate (PtdIns(4,5)P₂) and other downstream metabolites. However, mechanisms that control this PtdIns4P pool in cells of higher eukaryotes remain elusive. PI4KIIIα, the enzyme thought to synthesize this PtdIns4P pool, is reported to localize in the ER, contrary to the plasma membrane localization of its yeast homologue, Stt4. In this paper, we show that PI4KIIIα was targeted to the plasma membrane as part of an evolutionarily conserved complex containing Efr3/rolling blackout, which we found was a palmitoylated peripheral membrane protein. PI4KIIIα knockout cells exhibited a profound reduction of plasma membrane PtdIns4P but surprisingly only a modest reduction of PtdIns(4,5)P₂ because of robust up-regulation of PtdIns4P 5-kinases. In these cells, however, much of the PtdIns(4,5)P₂ was localized intracellularly, rather than at the plasma membrane as in control cells, along with proteins typically restricted to this membrane, revealing a major contribution of PI4KIIIα to the definition of plasma membrane identity.


Sac2/INPP5F is an inositol 4-phosphatase that functions in the endocytic pathway.

  • Fubito Nakatsu‎ et al.
  • The Journal of cell biology‎
  • 2015‎

The recruitment of inositol phosphatases to endocytic membranes mediates dephosphorylation of PI(4,5)P2, a phosphoinositide concentrated in the plasma membrane, and prevents its accumulation on endosomes. The importance of the conversion of PI(4,5)P2 to PtdIns during endocytosis is demonstrated by the presence of both a 5-phosphatase and a 4-phosphatase (Sac domain) module in the synaptojanins, endocytic PI(4,5)P2 phosphatases conserved from yeast to humans and the only PI(4,5)P2 phosphatases in yeast. OCRL, another 5-phosphatase that couples endocytosis to PI(4,5)P2 dephosphorylation, lacks a Sac domain. Here we show that Sac2/INPP5F is a PI4P phosphatase that colocalizes with OCRL on endocytic membranes, including vesicles formed by clathrin-mediated endocytosis, macropinosomes, and Rab5 endosomes. An OCRL-Sac2/INPP5F interaction could be demonstrated by coimmunoprecipitation and was potentiated by Rab5, whose activity is required to recruit Sac2/INPP5F to endosomes. Sac2/INPP5F and OCRL may cooperate in the sequential dephosphorylation of PI(4,5)P2 at the 5 and 4 position of inositol in a partnership that mimics that of the two phosphatase modules of synaptojanin.


Coordinated actions of actin and BAR proteins upstream of dynamin at endocytic clathrin-coated pits.

  • Shawn M Ferguson‎ et al.
  • Developmental cell‎
  • 2009‎

The GTPase dynamin, a key player in endocytic membrane fission, interacts with numerous proteins that regulate actin dynamics and generate/sense membrane curvature. To determine the functional relationship between these proteins and dynamin, we have analyzed endocytic intermediates that accumulate in cells that lack dynamin (derived from dynamin 1 and 2 double conditional knockout mice). In these cells, actin-nucleating proteins, actin, and BAR domain proteins accumulate at the base of arrested endocytic clathrin-coated pits, where they support the growth of dynamic long tubular necks. These results, which we show reflect the sequence of events in wild-type cells, demonstrate a concerted action of these proteins prior to, and independent of, dynamin and emphasize similarities between clathrin-mediated endocytosis in yeast and higher eukaryotes. Our data also demonstrate that the relationship between dynamin and actin is intimately connected to dynamin's endocytic role and that dynamin terminates a powerful actin- and BAR protein-dependent tubulating activity.


Very-long-chain fatty acids are crucial to neuronal polarity by providing sphingolipids to lipid rafts.

  • Atsuko Honda‎ et al.
  • Cell reports‎
  • 2023‎

Fatty acids have long been considered essential to brain development; however, the involvement of their synthesis in nervous system formation is unclear. We generate mice with knockout of GPSN2, an enzyme for synthesis of very-long-chain fatty acids (VLCFAs) and investigate the effects. Both GPSN2-/- and GPSN2+/- mice show abnormal neuronal networks as a result of impaired neuronal polarity determination. Lipidomics of GPSN2-/- embryos reveal that ceramide synthesis is specifically inhibited depending on FA length; namely, VLCFA-containing ceramide is reduced. We demonstrate that lipid rafts are highly enriched in growth cones and that GPSN2+/- neurons lose gangliosides in their membranes. Application of C24:0 ceramide, but not C16:0 ceramide or C24:0 phosphatidylcholine, to GPSN2+/- neurons rescues both neuronal polarity determination and lipid-raft density in the growth cone. Taken together, our results indicate that VLCFA synthesis contributes to physiological neuronal development in brain network formation, in particular neuronal polarity determination through the formation of lipid rafts.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: