Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 23 papers

Siltuximab is associated with improved progression-free survival in idiopathic multicentric Castleman disease.

  • Frits van Rhee‎ et al.
  • Blood advances‎
  • 2022‎

Idiopathic multicentric Castleman disease (iMCD) is a rare heterogeneous disorder involving multicentric lymphadenopathy, systemic inflammation, and cytokine-driven organ dysfunction. Despite the approval of siltuximab, a monoclonal antibody against interleukin-6, for the treatment of iMCD, it is not known how long patients should receive siltuximab before determining whether the treatment is beneficial and should be continued. We performed post hoc analyses of the phase 2 randomized double-blind placebo-controlled trial of siltuximab for the treatment of patients with iMCD to determine the sequence of normalization of laboratory, clinical, and lymph node responses in patients who responded to siltuximab. Seventy-nine patients were enrolled in the trial (siltuximab, n = 53; placebo plus best supportive care, n = 26). Progression-free survival (PFS) was significantly improved in siltuximab-treated patients compared with those receiving placebo (P = .0001). The median PFS was 14.5 months (95% confidence interval, 13.6 months to upper bound not reached) for patients receiving placebo but was not reached for patients receiving siltuximab. In siltuximab-treated patients who achieved durable tumor (radiologic) and symptomatic responses (18 [34%] of 53), the median time to normalization of abnormal laboratory tests and clinical end points occurred in the following sequence: thrombocytosis, symptomatic response, elevated C-reactive protein, hypoalbuminemia, anemia, lymph node response, hyperfibrinogenemia, and elevated immunoglobulin G. Siltuximab treatment prolongs PFS, rapidly improves symptomatology, and provides meaningful clinical benefit despite some laboratory tests and enlarged lymph nodes taking months to normalize in treatment responders. These data support the continued frontline use of siltuximab for iMCD, as recommended by international guidelines. This trial was registered at www.clinicaltrials.gov as #NCT01024036.


Three years of maintenance with VRD in multiple myeloma: results of total therapy IIIB with a 15-year follow-up.

  • Samer Al Hadidi‎ et al.
  • Blood advances‎
  • 2024‎

The total therapy (TT) IIIB phase 2 study incorporated bortezomib into tandem melphalan-based hematopoietic stem cell transplantation with dexamethasone, thalidomide, cisplatin, doxorubicin, cyclophosphamide, and etoposide for induction/consolidation and bortezomib, lenalidomide, and dexamethasone (VRD) for maintenance in patients with newly diagnosed multiple myeloma (MM). This updated analysis presents a 15.4-year median follow-up. Of 177 patients, 21% patients had gene expression profile (GEP)-defined high-risk MM. 15-year progression free survival (PFS) was 27.9%. Median PFS was better in GEP-defined low-risk patients at 7.8 years and in International Staging System stage 1 patients at 8.7 years. Overall, median OS was 9.1 years, and 15-year overall survival (OS) was 35.9%. GEP-defined low-risk patients' median OS was 11.2 years, and that of GEP-defined high-risk patients was 2.8 years. There was no difference in OS between TT IIIB and TT IIIA. This study includes the longest follow-up of patients treated with maintenance VRD reported to date. In patients with GEP-defined low-risk, nearly half and one-third of patients without ongoing treatment showed no signs of progression at 10 and 15 years, respectively. One-third of patients survived more than 15 years, but 3 years of VRD maintenance did not improve outcomes for patients with GEP-defined high-risk MM. The study was registered on www.clinicaltrials.gov as #NCT00572169.


Poor overall survival in hyperhaploid multiple myeloma is defined by double-hit bi-allelic inactivation of TP53.

  • Cody Ashby‎ et al.
  • Oncotarget‎
  • 2019‎

Hyperhaploid multiple myeloma is a rare numerical aberration group defined by a range of 24-34 chromosomes, which is associated with a poor prognosis with a 5-year survival rate of 23%. Hyperhaploid patient samples (n=8) were sequenced and copy number and mutations identified. Samples had a median of 13 monosomies (range 12-14), which in general were those not associated with trisomies in hyperdiploid samples. The chromosomes traditionally trisomic in hyperdiploid myeloma were disomic in hyperhaploid myeloma with retention of heterodisomy. We examined the hyperhaploid samples for frequently mutated genes and found that 8/8 (100%) hyperhaploid samples had a mutation in TP53, exceeding the overall rate of mutation in newly diagnosed patients (5.5%), indicating an oncogenic dependency in this group. All samples with TP53 mutation also had monosomy of chromosome 17, indicating bi-allelic inactivation of TP53. As such, this high risk group is part of double-hit myeloma.


Accelerated single cell seeding in relapsed multiple myeloma.

  • Heather J Landau‎ et al.
  • Nature communications‎
  • 2020‎

Multiple myeloma (MM) progression is characterized by the seeding of cancer cells in different anatomic sites. To characterize this evolutionary process, we interrogated, by whole genome sequencing, 25 samples collected at autopsy from 4 patients with relapsed MM and an additional set of 125 whole exomes collected from 51 patients. Mutational signatures analysis showed how cytotoxic agents introduce hundreds of unique mutations in each surviving cancer cell, detectable by bulk sequencing only in cases of clonal expansion of a single cancer cell bearing the mutational signature. Thus, a unique, single-cell genomic barcode can link chemotherapy exposure to a discrete time window in a patient's life. We leveraged this concept to show that MM systemic seeding is accelerated at relapse and appears to be driven by the survival and subsequent expansion of a single myeloma cell following treatment with high-dose melphalan therapy and autologous stem cell transplant.


Epigenomic translocation of H3K4me3 broad domains over oncogenes following hijacking of super-enhancers.

  • Aneta Mikulasova‎ et al.
  • Genome research‎
  • 2022‎

Chromosomal translocations are important drivers of haematological malignancies whereby proto-oncogenes are activated by juxtaposition with enhancers, often called enhancer hijacking We analyzed the epigenomic consequences of rearrangements between the super-enhancers of the immunoglobulin heavy locus (IGH) and proto-oncogene CCND1 that are common in B cell malignancies. By integrating BLUEPRINT epigenomic data with DNA breakpoint detection, we characterized the normal chromatin landscape of the human IGH locus and its dynamics after pathological genomic rearrangement. We detected an H3K4me3 broad domain (BD) within the IGH locus of healthy B cells that was absent in samples with IGH-CCND1 translocations. The appearance of H3K4me3-BD over CCND1 in the latter was associated with overexpression and extensive chromatin accessibility of its gene body. We observed similar cancer-specific H3K4me3-BDs associated with hijacking of super-enhancers of other common oncogenes in B cell (MAF, MYC, and FGFR3/NSD2) and T cell malignancies (LMO2, TLX3, and TAL1). Our analysis suggests that H3K4me3-BDs can be created by super-enhancers and supports the new concept of epigenomic translocation, in which the relocation of H3K4me3-BDs from cell identity genes to oncogenes accompanies the translocation of super-enhancers.


Functional dissection of inherited non-coding variation influencing multiple myeloma risk.

  • Ram Ajore‎ et al.
  • Nature communications‎
  • 2022‎

Thousands of non-coding variants have been associated with increased risk of human diseases, yet the causal variants and their mechanisms-of-action remain obscure. In an integrative study combining massively parallel reporter assays (MPRA), expression analyses (eQTL, meQTL, PCHiC) and chromatin accessibility analyses in primary cells (caQTL), we investigate 1,039 variants associated with multiple myeloma (MM). We demonstrate that MM susceptibility is mediated by gene-regulatory changes in plasma cells and B-cells, and identify putative causal variants at six risk loci (SMARCD3, WAC, ELL2, CDCA7L, CEP120, and PREX1). Notably, three of these variants co-localize with significant plasma cell caQTLs, signaling the presence of causal activity at these precise genomic positions in an endogenous chromosomal context in vivo. Our results provide a systematic functional dissection of risk loci for a hematologic malignancy.


Myeloma Genome Project Panel is a Comprehensive Targeted Genomics Panel for Molecular Profiling of Patients with Multiple Myeloma.

  • Parvathi Sudha‎ et al.
  • Clinical cancer research : an official journal of the American Association for Cancer Research‎
  • 2022‎

We designed a comprehensive multiple myeloma targeted sequencing panel to identify common genomic abnormalities in a single assay and validated it against known standards.


ACCELERATE: A Patient-Powered Natural History Study Design Enabling Clinical and Therapeutic Discoveries in a Rare Disorder.

  • Sheila K Pierson‎ et al.
  • Cell reports. Medicine‎
  • 2020‎

Geographically dispersed patients, inconsistent treatment tracking, and limited infrastructure slow research for many orphan diseases. We assess the feasibility of a patient-powered study design to overcome these challenges for Castleman disease, a rare hematologic disorder. Here, we report initial results from the ACCELERATE natural history registry. ACCELERATE includes a traditional physician-reported arm and a patient-powered arm, which enables patients to directly contribute medical data and biospecimens. This study design enables successful enrollment, with the 5-year minimum enrollment goal being met in 2 years. A median of 683 clinical, laboratory, and imaging data elements are captured per patient in the patient-powered arm compared with 37 in the physician-reported arm. These data reveal subgrouping characteristics, identify off-label treatments, support treatment guidelines, and are used in 17 clinical and translational studies. This feasibility study demonstrates that the direct-to-patient design is effective for collecting natural history data and biospecimens, tracking therapies, and providing critical research infrastructure.


Resolving the spatial architecture of myeloma and its microenvironment at the single-cell level.

  • Lukas John‎ et al.
  • Nature communications‎
  • 2023‎

In multiple myeloma spatial differences in the subclonal architecture, molecular signatures and composition of the microenvironment remain poorly characterized. To address this shortcoming, we perform multi-region sequencing on paired random bone marrow and focal lesion samples from 17 newly diagnosed patients. Using single-cell RNA- and ATAC-seq we find a median of 6 tumor subclones per patient and unique subclones in focal lesions. Genetically identical subclones display different levels of spatial transcriptional plasticity, including nearly identical profiles and pronounced heterogeneity at different sites, which can include differential expression of immunotherapy targets, such as CD20 and CD38. Macrophages are significantly depleted in the microenvironment of focal lesions. We observe proportional changes in the T-cell repertoire but no site-specific expansion of T-cell clones in intramedullary lesions. In conclusion, our results demonstrate the relevance of considering spatial heterogeneity in multiple myeloma with potential implications for models of cell-cell interactions and disease progression.


Bispecific BCMA/CD24 CAR-T cells control multiple myeloma growth.

  • Fumou Sun‎ et al.
  • Nature communications‎
  • 2024‎

Anti-multiple myeloma B cell maturation antigen (BCMA)-specific chimeric antigen receptor (CAR) T-cell therapies represent a promising treatment strategy with high response rates in myeloma. However, durable cures following anti-BCMA CAR-T cell treatment of myeloma are rare. One potential reason is that a small subset of minimal residual myeloma cells seeds relapse. Residual myeloma cells following BCMA-CAR-T-mediated treatment show less-differentiated features and express stem-like genes, including CD24. CD24-positive myeloma cells represent a large fraction of residual myeloma cells after BCMA-CAR-T therapy. In this work, we develop CD24-CAR-T cells and test their ability to eliminate myeloma cells. We find that CD24-CAR-T cells block the CD24-Siglec-10 pathway, thereby enhancing macrophage phagocytic clearance of myeloma cells. Additionally, CD24-CAR-T cells polarize macrophages to a M1-like phenotype. A dual-targeted BCMA-CD24-CAR-T exhibits improved efficacy compared to monospecific BCMA-CAR-T-cell therapy. This work presents an immunotherapeutic approach that targets myeloma cells and promotes tumor cell clearance by macrophages.


Interleukin-6 receptor polymorphism is prevalent in HIV-negative Castleman Disease and is associated with increased soluble interleukin-6 receptor levels.

  • Katie Stone‎ et al.
  • PloS one‎
  • 2013‎

Multicentric Castleman Disease is largely driven by increased signaling in the pathway for the plasma cell growth factor interleukin-6. We hypothesized that interleukin-6/interleukin-6 receptor/gp130 polymorphisms contribute to increased interleukin-6 and/or other components of the interleukin-6 signaling pathway in HIV-negative Castleman Disease patients. The study group was composed of 58 patients and 50 healthy donors of a similar racial/ethnic profile. Of seven polymorphisms chosen for analysis, we observed an increased frequency between patients and controls of the minor allele of interleukin-6 receptor polymorphism rs4537545, which is in linkage disequilibrium with interleukin-6 receptor polymorphism rs2228145. Further, individuals possessing at least one copy of the minor allele of either polymorphism expressed higher levels of soluble interleukin-6 receptor. These elevated interleukin-6 receptor levels may contribute to increased interleukin-6 activity through the trans-signaling pathway. These data suggest that interleukin-6 receptor polymorphism may be a contributing factor in Castleman Disease, and further research is warranted.


Genomic analysis of primary plasma cell leukemia reveals complex structural alterations and high-risk mutational patterns.

  • Carolina Schinke‎ et al.
  • Blood cancer journal‎
  • 2020‎

Primary plasma cell leukemia (pPCL) is a rare and aggressive form of multiple myeloma (MM) that is characterized by the presence of ≥20% circulating plasma cells. Overall survival remains poor despite advances of anti-MM therapy. The disease biology as well as molecular mechanisms that distinguish pPCL from non-pPCL MM remain poorly understood and, given the rarity of the disease, are challenging to study. In an attempt to identify key biological mechanisms that result in the aggressive pPCL phenotype, we performed whole-exome sequencing and gene expression analysis in 23 and 41 patients with newly diagnosed pPCL, respectively. The results reveal an enrichment of complex structural changes and high-risk mutational patterns in pPCL that explain, at least in part, the aggressive nature of the disease. In particular, pPCL patients with traditional low-risk features such as translocation t(11;14) or hyperdiploidy accumulated adverse risk genetic events that could account for the poor outcome in this group. Furthermore, gene expression profiling showed upregulation of adverse risk modifiers in pPCL compared to non-pPCL MM, while adhesion molecules and extracellular matrix proteins became increasingly downregulated. In conclusion, this is one of the largest studies to dissect pPCL on a genomic and molecular level.


Bone marrow microenvironments that contribute to patient outcomes in newly diagnosed multiple myeloma: A cohort study of patients in the Total Therapy clinical trials.

  • Samuel A Danziger‎ et al.
  • PLoS medicine‎
  • 2020‎

The tumor microenvironment (TME) is increasingly appreciated as an important determinant of cancer outcome, including in multiple myeloma (MM). However, most myeloma microenvironment studies have been based on bone marrow (BM) aspirates, which often do not fully reflect the cellular content of BM tissue itself. To address this limitation in myeloma research, we systematically characterized the whole bone marrow (WBM) microenvironment during premalignant, baseline, on treatment, and post-treatment phases.


Risk of infections associated with the use of bispecific antibodies in multiple myeloma: a pooled analysis.

  • Farah Mazahreh‎ et al.
  • Blood advances‎
  • 2023‎

The use of bispecific antibodies (BsAbs) in the treatment of relapsed/refractory multiple myeloma (MM) is showing early promising overall response rates in heavily pretreated patients. Infectious complications related to the use of BsAbs are not well described. We conducted a pooled analysis that included all single-agent BsAbs used in MM with no prior use of different BsAbs. A total of 1185 patients with MM were treated with a BsAb in the studied period (71.6% of the patients treated with an agent targeting B-cell maturation antigen (BCMA). Pooled median follow-up was short at 6.1 months (7.5 vs 5.2 months for BCMA vs non-BCMA BsAbs, respectively). Adverse events of interest included all grade neutropenia in 38.6%, all grade infections in 50% (n = 542/1083), all grade cytokine release syndrome in 59.6% (n = 706/1185), grade III/IV neutropenia in 34.8% (n = 372/1068), grade III/IV infections in 24.5% (n = 272/1110), grade III/IV pneumonia in 10% (n = 52.4/506), and grade III/IV coronavirus disease 2019 in 11.4% (n = 45.4/395) of the patients. Non-BCMA-targeted BsAbs were associated with lower grade III/IV neutropenia (25.3% vs 39.2%) and lower grade III/IV infections (11.9% vs 30%) when compared with BCMA-targeted BsAbs. Hypogammaglobulinemia was reported in 4 studies, with a prevalence of 75.3% (n = 256/340) of the patients, with IV immunoglobulin used in 48% (n = 123/256) of them. Death was reported in 110 patients, of which 28 (25.5%) were reported to be secondary to infections. Certain precautions should be used when using BsAbs to mitigate the risk and/or identify and treat infections promptly.


High NEK2 expression in myeloid progenitors suppresses T cell immunity in multiple myeloma.

  • Yan Cheng‎ et al.
  • Cell reports. Medicine‎
  • 2023‎

Multiple myeloma (MM) growth is supported by an immune-tolerant bone marrow microenvironment. Here, we find that loss of Never in mitosis gene A (NIMA)-related kinase 2 (NEK2) in tumor microenvironmental cells is associated with MM growth suppression. The absence of NEK2 leads to both fewer tumor-associated macrophages (TAMs) and inhibitory T cells. NEK2 expression in myeloid progenitor cells promotes the generation of functional TAMs when stimulated with MM conditional medium. Clinically, high NEK2 expression in MM cells is associated with increased CD8+ T effector memory cells, while low NEK2 is associated with an IFN-γ gene signature and activated T cell response. Inhibition of NEK2 upregulates PD-L1 expression in MM cells and myeloid cells. In a mouse model, the combination of NEK2 inhibitor INH154 with PD-L1 blockade effectively eliminates MM cells and prolongs survival. Our results provide strong evidence that NEK2 inhibition may overcome tumor immune escape and support its further clinical development.


BCMA- and CST6-specific CAR T cells lyse multiple myeloma cells and suppress murine osteolytic lesions.

  • Fumou Sun‎ et al.
  • The Journal of clinical investigation‎
  • 2024‎

We have previously demonstrated that cystatin E/M (CST6), which is elevated in a subset of patients with multiple myeloma (MM) lacking osteolytic lesions (OLs), suppresses MM bone disease by blocking osteoclast differentiation and function. CST6 is a secreted type 2 cystatin, a cysteine protease inhibitor that regulates lysosomal cysteine proteases and the asparaginyl endopeptidase legumain. Here, we developed B cell maturation antigen (BCMA) CST6 chimeric antigen receptor T cells (CAR-T cells), which lysed MM cells and released CST6 proteins. Our in vitro studies show that these CAR-T cells suppressed the differentiation and formation of tartrate-resistant acid phosphatase-positive (TRAP+) osteoclasts. Using xenografted MM mice, bioluminescence images showed that both BCMA-CAR-T and BCMA-CST6-CAR-T cells inhibited MM growth to a similar extent. Reconstructed micro-computed tomography images revealed that BCMA-CST6-CAR-T cells, but not BCMA-CAR-T cells, prevented MM-induced bone damage and decreased osteoclast numbers. Our results provide a CAR-T strategy that targets tumor cells directly and delivers an inhibitor of bone resorption.


Profile of elotuzumab and its potential in the treatment of multiple myeloma.

  • Yi-Chang Liu‎ et al.
  • Blood and lymphatic cancer : targets and therapy‎
  • 2014‎

Although the introduction of novel drugs has improved outcome significantly in multiple myeloma (MM), many patients still eventually relapse. Monoclonal antibodies (mAbs) targeting MM-related antigens can complement currently available therapies. CS1 (also known as CD2 subunit 1, SLAMF7, CD319, and CRACC), a cell surface glycoprotein receptor that is a member of the signaling lymphocytic activation molecule (SLAM) family, is highly and nearly uniformly expressed in myeloma cells at the gene and protein level, but not expressed in other tissues, including hematopoietic stem cells, making CS1 a compelling target for the design of immunotherapies directed at MM. Elotuzumab (formerly HuLuc63), which is a humanized IgG1 mAb recognizing the extracellular region of human CS1, has been shown to be effective in preclinical and early stage clinical investigations, and its efficacy and safety will be further validated in ongoing Phase III trials. Integration of elotuzumab into multidrug therapeutic paradigms seems logical, as elotuzumab is more effective when combined with other agents, such as immunomodulatory drugs or proteasome inhibitors. The functional role of CS1 in MM pathogenesis and the consequences of elotuzumab on normal immune cells should be further investigated. Identification of potential biomarkers and exploration of resistance mechanisms are important issues for elotuzumab-based therapies, as is determining the best clinical placement of elotuzumab, not only in the relapsed/refractory setting but also in upfront therapy for high-risk frank MM, smoldering MM at high-risk of progression, and in maintenance regimens. This review will cover the biological characteristics of CS1 in normal immune cells and MM cells, the efficacy profile and mechanisms of action of elotuzumab from preclinical and clinical investigations, and its potential impact on the treatment of MM.


Virome capture sequencing does not identify active viral infection in unicentric and idiopathic multicentric Castleman disease.

  • Christopher S Nabel‎ et al.
  • PloS one‎
  • 2019‎

Castleman disease (CD) describes a spectrum of heterogeneous disorders defined by characteristic lymph node histopathology. Enlarged lymph nodes demonstrating CD histopathology can occur in isolation (unicentric CD; UCD) sometimes accompanied by mild symptoms, or at multiple sites (multicentric CD, MCD) with systemic inflammation and cytokine-driven multi-organ dysfunction. The discovery that Kaposi sarcoma herpesvirus/human herpesvirus (HHV)-8 drives MCD in a subset of patients has led to the hypotheses that UCD and MCD patients with negative HHV-8 testing by conventional methods may represent false negatives, or that these cases are driven by another virus, known or unknown. To investigate these hypotheses, the virome capture sequencing for vertebrate viruses (VirCapSeq-VERT) platform was employed to detect RNA transcripts from known and novel viruses in fresh frozen lymph node tissue from CD patients (12 UCD, 11 HHV-8-negative MCD [idiopathic MCD; iMCD], and two HHV-8-positive MCD) and related diseases (three T cell lymphoma and three Hodgkin lymphoma). This assay detected HHV-8 in both HHV-8-positive cases; however, HHV-8 was not found in clinically HHV-8-negative iMCD or UCD cases. Additionally, no novel viruses were discovered, and no single known virus was detected with apparent association to HHV-8-negative CD cases. Herpesviridae family members, notably including Epstein-Barr virus (EBV), were detected in 7 out of 12 UCD and 5 of 11 iMCD cases with apparent correlations with markers of disease severity in iMCD. Analysis of a separate cohort of archival formalin-fixed, paraffin-embedded lymph node tissue by In situ hybridization revealed significantly fewer EBV-positive cells in UCD and iMCD compared to tissue from HHV-8-positive MCD and EBV-associated lymphoproliferative disorder. In an additional cohort, quantitative testing for EBV by PCR in peripheral blood during disease flare did not detect systemic EBV viremia, suggesting detection lymph node tissue is due to occult, local reactivation in UCD and iMCD. This study confirms that HHV-8 is not present in UCD and iMCD patients. Further, it fails to establish a clear association between any single virus, novel or known, and CD in HHV-8-negative cases. Given that distinct forms of CD exist with viral and non-viral etiological drivers, CD should be considered a group of distinct and separate diseases with heterogeneous causes worthy of further study.


The functional epigenetic landscape of aberrant gene expression in molecular subgroups of newly diagnosed multiple myeloma.

  • Samrat Roy Choudhury‎ et al.
  • Journal of hematology & oncology‎
  • 2020‎

Multiple Myeloma (MM) is a hematological malignancy with genomic heterogeneity and poor survival outcome. Apart from the central role of genetic lesions, epigenetic anomalies have been identified as drivers in the development of the disease.


The molecular make up of smoldering myeloma highlights the evolutionary pathways leading to multiple myeloma.

  • Eileen M Boyle‎ et al.
  • Nature communications‎
  • 2021‎

Smoldering myeloma (SMM) is associated with a high-risk of progression to myeloma (MM). We report the results of a study of 82 patients with both targeted sequencing that included a capture of the immunoglobulin and MYC regions. By comparing these results to newly diagnosed myeloma (MM) we show fewer NRAS and FAM46C mutations together with fewer adverse translocations, del(1p), del(14q), del(16q), and del(17p) in SMM consistent with their role as drivers of the transition to MM. KRAS mutations are associated with a shorter time to progression (HR 3.5 (1.5-8.1), p = 0.001). In an analysis of change in clonal structure over time we studied 53 samples from nine patients at multiple time points. Branching evolutionary patterns, novel mutations, biallelic hits in crucial tumour suppressor genes, and segmental copy number changes are key mechanisms underlying the transition to MM, which can precede progression and be used to guide early intervention strategies.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: