Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

Regulation of BACE1 expression after injury is linked to the p75 neurotrophin receptor.

  • Khalil Saadipour‎ et al.
  • Molecular and cellular neurosciences‎
  • 2019‎

BACE1 is a transmembrane aspartic protease that cleaves various substrates and it is required for normal brain function. BACE1 expression is high during early development, but it is reduced in adulthood. Under conditions of stress and injury, BACE1 levels are increased; however, the underlying mechanisms that drive BACE1 elevation are not well understood. One mechanism associated with brain injury is the activation of injurious p75 neurotrophin receptor (p75), which can trigger pathological signals. Here we report that within 72 h after controlled cortical impact (CCI) or laser injury, BACE1 and p75 are increased and tightly co-expressed in cortical neurons of mouse brain. Additionally, BACE1 is not up-regulated in p75 null mice in response to focal cortical injury, while p75 over-expression results in BACE1 augmentation in HEK-293 and SY5Y cell lines. A luciferase assay conducted in SY5Y cell line revealed that BACE1 expression is regulated at the transcriptional level in response to p75 transfection. Interestingly, this effect does not appear to be dependent upon p75 ligands including mature and pro-neurotrophins. In addition, BACE1 activity on amyloid precursor protein (APP) is enhanced in SY5Y-APP cells transfected with a p75 construct. Lastly, we found that the activation of c-jun n-terminal kinase (JNK) by p75 contributes to BACE1 up-regulation. This study explores how two injury-induced molecules are intimately connected and suggests a potential link between p75 signaling and the expression of BACE1 after brain injury.


Pro-NGF secreted by astrocytes promotes motor neuron cell death.

  • Marco Domeniconi‎ et al.
  • Molecular and cellular neurosciences‎
  • 2007‎

It is well established that motor neurons depend for their survival on many trophic factors. In this study, we show that the precursor form of NGF (pro-NGF) can induce the death of motor neurons via engagement of the p75 neurotrophin receptor. The pro-apoptotic activity was dependent upon the presence of sortilin, a p75 co-receptor expressed on motor neurons. One potential source of pro-NGF is reactive astrocytes, which up-regulate the levels of pro-NGF in response to peroxynitrite, an oxidant and producer of free radicals. Indeed, motor neuron viability was sensitive to conditioned media from cultured astrocytes treated with peroxynitrite and this effect could be reversed using a specific antibody against the pro-domain of pro-NGF. These results are consistent with a role for activated astrocytes and pro-NGF in the induction of motor neuron death and suggest a possible therapeutic target for the treatment of motor neuron disease.


The ARMS/Kidins220 scaffold protein modulates synaptic transmission.

  • Juan Carlos Arévalo‎ et al.
  • Molecular and cellular neurosciences‎
  • 2010‎

Activity-dependent changes of synaptic connections are facilitated by a variety of scaffold proteins, including PSD-95, Shank, SAP97 and GRIP, which serve to organize ion channels, receptors and enzymatic activities and to coordinate the actin cytoskeleton. The abundance of these scaffold proteins raises questions about the functional specificity of action of each protein. Here we report that basal synaptic transmission is regulated in an unexpected manner by the ankyrin repeat-rich membrane-spanning (ARMS/Kidins220) scaffold protein. In particular, decreases in the levels of ARMS/Kidins220 in vivo led to an increase in basal synaptic transmission in the hippocampus, without affecting paired pulse facilitation. One explanation to account for the effects of ARMS/Kidins220 is an interaction with the AMPA receptor subunit, GluA1, which could be observed after immunoprecipitation. Importantly, shRNA and cell surface biotinylation experiments indicate that ARMS/Kidins220 levels have an impact on GluA1 phosphorylation and localization. Moreover, ARMS/Kidins220 is a negative regulator of AMPAR function, which was confirmed by inward rectification assays. These results provide evidence that modulation of ARMS/Kidins220 levels can regulate basal synaptic strength in a specific manner in hippocampal neurons.


A role for Fyn in Trk receptor transactivation by G-protein-coupled receptor signaling.

  • Rithwick Rajagopal‎ et al.
  • Molecular and cellular neurosciences‎
  • 2006‎

Signaling through Trk receptor tyrosine kinases can occur in the absence of neurotrophins through certain G-protein-coupled receptors (GPCRs). It has previously been suggested that GPCR-mediated Trk activation occurs on intracellular membranes and involves several second messengers, including Src family kinases and intracellular calcium. Here, we describe a novel role for the Src family kinase, Fyn, in regulating signaling events between GPCRs and Trk. We find that Fyn expression is sufficient to allow transactivation of Trk by adenosine and that Fyn and Trk are colocalized in a juxtanuclear membrane compartment. Adenosine activation of Fyn results in direct phosphorylation of Trk in vitro and follows a delayed time course that coincides with Trk activation. These results indicate that Fyn is activated by GPCR stimulation and is responsible for transactivation of Trk receptors on intracellular membranes.


Trk activation in the secretory pathway promotes Golgi fragmentation.

  • Leslayann C Schecterson‎ et al.
  • Molecular and cellular neurosciences‎
  • 2010‎

Activation of nascent receptor tyrosine kinases within the secretory pathway has been reported, yet the consequences of intracellular activation are largely unexplored. We report that overexpression of the Trk neurotrophin receptors causes accumulation of autoactivated receptors in the ER-Golgi intermediate compartment. Autoactivated receptors exhibit inhibited Golgi-mediated processing and they inhibit Golgi-mediated processing of other co-expressed transmembrane proteins, apparently by inducing fragmentation of the Golgi apparatus. Signaling from G protein-coupled receptors is known to induce Trk transactivation. Transactivation of nascent TrkB in hippocampal neurons resulting from exposure to the neuropeptide PACAP caused Golgi fragmentation, whereas BDNF-dependent activation of TrkB did not. TrkB-mediated Golgi fragmentation employs a MEK-dependent signaling pathway resembling that implicated in regulation of Golgi fragmentation in mitotic cells. Neuronal Golgi fragments, in the form of dendritically localized Golgi outposts, are important determinants of dendritic growth and branching. The capacity of transactivated TrkB to enhance neuronal Golgi fragmentation may represent a novel mechanism regulating neural plasticity.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: