Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 115 papers

Morphological and molecular investigations of a microsporidium infecting the European grape vine moth, Lobesia botrana Den. et Schiff., and its taxonomic determination as Cystosporogenes legeri nov. comb.

  • Regina G Kleespies‎ et al.
  • Journal of invertebrate pathology‎
  • 2003‎

We have isolated a microsporidium from a laboratory stock of the European grape vine moth, Lobesia botrana Den. et Schiff. (Lepidoptera, Tortricidae). Screening of this stock showed an infection rate of more than 90%, whereas field collected larvae from three different locations in Rhineland-Palatinate (Germany) did not demonstrate any signs of infection. Light and electron microscopic investigations of infected insects showed that gross pathology, morphology, and ultrastructure of the microsporidium are similar to those described earlier for Pleistophora legeri. Comparative phylogenetic analysis of the small subunit rDNA using maximum likelihood, maximum parsimony, and neighbour joining distance methods showed that our isolate was closely related to Cystosporogenes operophterae. Based on our morphological and molecular investigations we propose to rename this species Cystosporogenes legeri nov. comb.


Lifespan extension by methionine restriction requires autophagy-dependent vacuolar acidification.

  • Christoph Ruckenstuhl‎ et al.
  • PLoS genetics‎
  • 2014‎

Reduced supply of the amino acid methionine increases longevity across species through an as yet elusive mechanism. Here, we report that methionine restriction (MetR) extends yeast chronological lifespan in an autophagy-dependent manner. Single deletion of several genes essential for autophagy (ATG5, ATG7 or ATG8) fully abolished the longevity-enhancing capacity of MetR. While pharmacological or genetic inhibition of TOR1 increased lifespan in methionine-prototroph yeast, TOR1 suppression failed to extend the longevity of methionine-restricted yeast cells. Notably, vacuole-acidity was specifically enhanced by MetR, a phenotype that essentially required autophagy. Overexpression of vacuolar ATPase components (Vma1p or Vph2p) suffices to increase chronological lifespan of methionine-prototrophic yeast. In contrast, lifespan extension upon MetR was prevented by inhibition of vacuolar acidity upon disruption of the vacuolar ATPase. In conclusion, autophagy promotes lifespan extension upon MetR and requires the subsequent stimulation of vacuolar acidification, while it is epistatic to the equally autophagy-dependent anti-aging pathway triggered by TOR1 inhibition or deletion.


Magnetomitotransfer: An efficient way for direct mitochondria transfer into cultured human cells.

  • Tanja Macheiner‎ et al.
  • Scientific reports‎
  • 2016‎

In the course of mitochondrial diseases standard care mostly focuses on treatment of symptoms, while therapeutic approaches aimed at restoring mitochondrial function are currently still in development. The transfer of healthy or modified mitochondria into host cells would open up the possibilities of new cell therapies. Therefore, in this study, a novel method of mitochondrial transfer is proposed by anti-TOM22 magnetic bead-labeled mitochondria with the assistance of a magnetic plate. In comparison to the passive transfer method, the magnetomitotransfer method was more efficient at transferring mitochondria into cells (78-92% vs 0-17% over 3 days). This transfer was also more rapid, with a high ratio of magnetomitotransferred cells and high density of transferred mitochondria within the first day of culture. Importantly, transferred mitochondria appeared to be functional as they strongly enhanced respiration in magnetomitotransferred cells. The novel method of magnetomitotransfer may offer potential for therapeutic approaches for treatment of a variety of mitochondria-associated pathologies, e.g. various neurodegenerative diseases.


A new paradigm for transcription factor TFIIB functionality.

  • Vladimir Gelev‎ et al.
  • Scientific reports‎
  • 2014‎

Experimental and bioinformatic studies of transcription initiation by RNA polymerase II (RNAP2) have revealed a mechanism of RNAP2 transcription initiation less uniform across gene promoters than initially thought. However, the general transcription factor TFIIB is presumed to be universally required for RNAP2 transcription initiation. Based on bioinformatic analysis of data and effects of TFIIB knockdown in primary and transformed cell lines on cellular functionality and global gene expression, we report that TFIIB is dispensable for transcription of many human promoters, but is essential for herpes simplex virus-1 (HSV-1) gene transcription and replication. We report a novel cell cycle TFIIB regulation and localization of the acetylated TFIIB variant on the transcriptionally silent mitotic chromatids. Taken together, these results establish a new paradigm for TFIIB functionality in human gene expression, which when downregulated has potent anti-viral effects.


Viral killer toxins induce caspase-mediated apoptosis in yeast.

  • Jochen Reiter‎ et al.
  • The Journal of cell biology‎
  • 2005‎

In yeast, apoptotic cell death can be triggered by various factors such as H2O2, cell aging, or acetic acid. Yeast caspase (Yca1p) and cellular reactive oxygen species (ROS) are key regulators of this process. Here, we show that moderate doses of three virally encoded killer toxins (K1, K28, and zygocin) induce an apoptotic yeast cell response, although all three toxins differ significantly in their primary killing mechanisms. In contrast, high toxin concentrations prevent the occurrence of an apoptotic cell response and rather cause necrotic, toxin-specific cell killing. Studies with Deltayca1 and Deltagsh1 deletion mutants indicate that ROS accumulation as well as the presence of yeast caspase 1 is needed for apoptosis in toxin-treated yeast cells. We conclude that in the natural environment of toxin-secreting killer yeasts, where toxin concentration is usually low, induction of apoptosis might play an important role in efficient toxin-mediated cell killing.


Isolation of quiescent and nonquiescent cells from yeast stationary-phase cultures.

  • Chris Allen‎ et al.
  • The Journal of cell biology‎
  • 2006‎

Quiescence is the most common and, arguably, most poorly understood cell cycle state. This is in part because pure populations of quiescent cells are typically difficult to isolate. We report the isolation and characterization of quiescent and nonquiescent cells from stationary-phase (SP) yeast cultures by density-gradient centrifugation. Quiescent cells are dense, unbudded daughter cells formed after glucose exhaustion. They synchronously reenter the mitotic cell cycle, suggesting that they are in a G(0) state. Nonquiescent cells are less dense, heterogeneous, and composed of replicatively older, asynchronous cells that rapidly lose the ability to reproduce. Microscopic and flow cytometric analysis revealed that nonquiescent cells accumulate more reactive oxygen species than quiescent cells, and over 21 d, about half exhibit signs of apoptosis and necrosis. The ability to isolate both quiescent and nonquiescent yeast cells from SP cultures provides a novel, tractable experimental system for studies of quiescence, chronological and replicative aging, apoptosis, and the cell cycle.


Molecular dissection of colorectal cancer in pre-clinical models identifies biomarkers predicting sensitivity to EGFR inhibitors.

  • Moritz Schütte‎ et al.
  • Nature communications‎
  • 2017‎

Colorectal carcinoma represents a heterogeneous entity, with only a fraction of the tumours responding to available therapies, requiring a better molecular understanding of the disease in precision oncology. To address this challenge, the OncoTrack consortium recruited 106 CRC patients (stages I-IV) and developed a pre-clinical platform generating a compendium of drug sensitivity data totalling >4,000 assays testing 16 clinical drugs on patient-derived in vivo and in vitro models. This large biobank of 106 tumours, 35 organoids and 59 xenografts, with extensive omics data comparing donor tumours and derived models provides a resource for advancing our understanding of CRC. Models recapitulate many of the genetic and transcriptomic features of the donors, but defined less complex molecular sub-groups because of the loss of human stroma. Linking molecular profiles with drug sensitivity patterns identifies novel biomarkers, including a signature outperforming RAS/RAF mutations in predicting sensitivity to the EGFR inhibitor cetuximab.


Reprimo tissue-specific expression pattern is conserved between zebrafish and human.

  • Ricardo J Figueroa‎ et al.
  • PloS one‎
  • 2017‎

Reprimo (RPRM), a member of the RPRM gene family, is a tumor-suppressor gene involved in the regulation of the p53-mediated cell cycle arrest at G2/M. RPRM has been associated with malignant tumor progression and proposed as a potential biomarker for early cancer detection. However, the expression and role of RPRM, as well as its family, are poorly understood and their physiology is as yet unstudied. In this scenario, a model system like the zebrafish could serve to dissect the role of the RPRM family members in vivo. Phylogenetic analysis reveals that RPRM and RPRML have been differentially retained by most species throughout vertebrate evolution, yet RPRM3 has been retained only in a small group of distantly related species, including zebrafish. Herein, we characterized the spatiotemporal expression of RPRM (present in zebrafish as an infraclass duplication rprma/rprmb), RPRML and RPRM3 in the zebrafish. By whole-mount in situ hybridization (WISH) and fluorescent in situ hybridization (FISH), we demonstrate that rprm (rprma/rprmb) and rprml show a similar spatiotemporal expression profile during zebrafish development. At early developmental stages rprmb is expressed in somites. After one day post-fertilization, rprm (rprma/rprmb) and rprml are expressed in the notochord, brain, blood vessels and digestive tube. On the other hand, rprm3 shows the most unique expression profile, being expressed only in the central nervous system (CNS). We assessed the expression patterns of RPRM gene transcripts in adult zebrafish and human RPRM protein product in tissue samples by RT-qPCR and immunohistochemistry (IHC) staining, respectively. Strikingly, tissue-specific expression patterns of the RPRM transcripts and protein are conserved between zebrafish and humans. We propose the zebrafish as a powerful tool to elucidate the both physiological and pathological roles of the RPRM gene family.


The neuroprotective steroid progesterone promotes mitochondrial uncoupling, reduces cytosolic calcium and augments stress resistance in yeast cells.

  • Slaven Stekovic‎ et al.
  • Microbial cell (Graz, Austria)‎
  • 2017‎

The steroid hormone progesterone is not only a crucial sex hormone, but also serves as a neurosteroid, thus playing an important role in brain function. Epidemiological data suggest that progesterone improves the recovery of patients after traumatic brain injury. Brain injuries are often connected to elevated calcium spikes, reactive oxygen species (ROS) and programmed cell death affecting neurons. Here, we establish a yeast model to study progesterone-mediated cytoprotection. External supply of progesterone protected yeast cells from apoptosis-inducing stress stimuli and resulted in elevated mitochondrial oxygen uptake accompanied by a drop in ROS generation and ATP levels during chronological aging. In addition, cellular Ca2+ concentrations were reduced upon progesterone treatment, and this effect occurred independently of known Ca2+ transporters and mitochondrial respiration. All effects were also independent of Dap1, the yeast orthologue of the progesterone receptor. Altogether, our observations provide new insights into the cytoprotective effects of progesterone.


Snd3 controls nucleus-vacuole junctions in response to glucose signaling.

  • Sergi Tosal-Castano‎ et al.
  • Cell reports‎
  • 2021‎

Membrane contact sites facilitate the exchange of metabolites between organelles to support interorganellar communication. The nucleus-vacuole junctions (NVJs) establish physical contact between the perinuclear endoplasmic reticulum (ER) and the vacuole. Although the NVJ tethers are known, how NVJ abundance and composition are controlled in response to metabolic cues remains elusive. Here, we identify the ER protein Snd3 as central factor for NVJ formation. Snd3 interacts with NVJ tethers, supports their targeting to the contacts, and is essential for NVJ formation. Upon glucose exhaustion, Snd3 relocalizes from the ER to NVJs and promotes contact expansion regulated by central glucose signaling pathways. Glucose replenishment induces the rapid dissociation of Snd3 from the NVJs, preceding the slow disassembly of the junctions. In sum, this study identifies a key factor required for formation and regulation of NVJs and provides a paradigm for metabolic control of membrane contact sites.


Isobacachalcone induces autophagy and improves the outcome of immunogenic chemotherapy.

  • Qi Wu‎ et al.
  • Cell death & disease‎
  • 2020‎

A number of natural plant products have a long-standing history in both traditional and modern medical applications. Some secondary metabolites induce autophagy and mediate autophagy-dependent healthspan- and lifespan-extending effects in suitable mouse models. Here, we identified isobacachalcone (ISO) as a non-toxic inducer of autophagic flux that acts on human and mouse cells in vitro, as well as mouse organs in vivo. Mechanistically, ISO inhibits AKT as well as, downstream of AKT, the mechanistic target of rapamycin complex 1 (mTORC1), coupled to the activation of the pro-autophagic transcription factors EB (TFEB) and E3 (TFE3). Cells equipped with a constitutively active AKT mutant failed to activate autophagy. ISO also stimulated the AKT-repressible activation of all three arms of the unfolded stress response (UPR), including the PERK-dependent phosphorylation of eukaryotic initiation factor 2α (eIF2α). Knockout of TFEB and/or TFE3 blunted the UPR, while knockout of PERK or replacement of eIF2α by a non-phosphorylable mutant reduced TFEB/TFE3 activation and autophagy induced by ISO. This points to crosstalk between the UPR and autophagy. Of note, the administration of ISO to mice improved the efficacy of immunogenic anticancer chemotherapy. This effect relied on an improved T lymphocyte-dependent anticancer immune response and was lost upon constitutive AKT activation in, or deletion of the essential autophagy gene Atg5 from, the malignant cells. In conclusion, ISO is a bioavailable autophagy inducer that warrants further preclinical characterization.


The NADH Dehydrogenase Nde1 Executes Cell Death after Integrating Signals from Metabolism and Proteostasis on the Mitochondrial Surface.

  • SreeDivya Saladi‎ et al.
  • Molecular cell‎
  • 2020‎

The proteolytic turnover of mitochondrial proteins is poorly understood. Here, we used a combination of dynamic isotope labeling and mass spectrometry to gain a global overview of mitochondrial protein turnover in yeast cells. Intriguingly, we found an exceptionally high turnover of the NADH dehydrogenase, Nde1. This homolog of the mammalian apoptosis inducing factor, AIF, forms two distinct topomers in mitochondria, one residing in the intermembrane space while the other spans the outer membrane and is exposed to the cytosol. The surface-exposed topomer triggers cell death in response to pro-apoptotic stimuli. The surface-exposed topomer is degraded by the cytosolic proteasome/Cdc48 system and the mitochondrial protease Yme1; however, it is strongly enriched in respiratory-deficient cells. Our data suggest that in addition to their role in electron transfer, mitochondrial NADH dehydrogenases such as Nde1 or AIF integrate signals from energy metabolism and cytosolic proteostasis to eliminate compromised cells from growing populations.


Bab2 Functions as an Ecdysone-Responsive Transcriptional Repressor during Drosophila Development.

  • Jianli Duan‎ et al.
  • Cell reports‎
  • 2020‎

Drosophila development is governed by distinct ecdysone steroid pulses that initiate spatially and temporally defined gene expression programs. The translation of these signals into tissue-specific responses is crucial for metamorphosis, but the mechanisms that confer specificity to systemic ecdysone pulses are far from understood. Here, we identify Bric-à-brac 2 (Bab2) as an ecdysone-responsive transcriptional repressor that controls temporal gene expression during larval to pupal transition. Bab2 is necessary to terminate Salivary gland secretion (Sgs) gene expression, while premature Bab2 expression blocks Sgs genes and causes precocious salivary gland histolysis. The timely expression of bab2 is controlled by the ecdysone-responsive transcription factor Broad, and manipulation of EcR/USP/Broad signaling induces inappropriate Bab2 expression and termination of Sgs gene expression. Bab2 directly binds to Sgs loci in vitro and represses all Sgs genes in vivo. Our work characterizes Bab2 as a temporal regulator of somatic gene expression in response to systemic ecdysone signaling.


Respiratory supercomplexes enhance electron transport by decreasing cytochrome c diffusion distance.

  • Jens Berndtsson‎ et al.
  • EMBO reports‎
  • 2020‎

Respiratory chains are crucial for cellular energy conversion and consist of multi-subunit complexes that can assemble into supercomplexes. These structures have been intensively characterized in various organisms, but their physiological roles remain unclear. Here, we elucidate their function by leveraging a high-resolution structural model of yeast respiratory supercomplexes that allowed us to inhibit supercomplex formation by mutation of key residues in the interaction interface. Analyses of a mutant defective in supercomplex formation, which still contains fully functional individual complexes, show that the lack of supercomplex assembly delays the diffusion of cytochrome c between the separated complexes, thus reducing electron transfer efficiency. Consequently, competitive cellular fitness is severely reduced in the absence of supercomplex formation and can be restored by overexpression of cytochrome c. In sum, our results establish how respiratory supercomplexes increase the efficiency of cellular energy conversion, thereby providing an evolutionary advantage for aerobic organisms.


Astaxanthin exerts protective effects similar to bexarotene in Alzheimer's disease by modulating amyloid-beta and cholesterol homeostasis in blood-brain barrier endothelial cells.

  • Elham Fanaee-Danesh‎ et al.
  • Biochimica et biophysica acta. Molecular basis of disease‎
  • 2019‎

The pathogenesis of Alzheimer's disease (AD) is characterized by overproduction, impaired clearance, and deposition of amyloid-β peptides (Aβ) and connected to cholesterol homeostasis. Since the blood-brain barrier (BBB) is involved in these processes, we investigated effects of the retinoid X receptor agonist, bexarotene (Bex), and the peroxisome proliferator-activated receptor α agonist and antioxidant, astaxanthin (Asx), on pathways of cellular cholesterol metabolism, amyloid precursor protein processing/Aβ production and transfer at the BBB in vitro using primary porcine brain capillary endothelial cells (pBCEC), and in 3xTg AD mice. Asx/Bex downregulated transcription/activity of amyloidogenic BACE1 and reduced Aβ oligomers and ~80 kDa intracellular 6E10-reactive APP/Aβ species, while upregulating non-amyloidogenic ADAM10 and soluble (s)APPα production in pBCEC. Asx/Bex enhanced Aβ clearance to the apical/plasma compartment of the in vitro BBB model. Asx/Bex increased expression levels of ABCA1, LRP1, and/or APOA-I. Asx/Bex promoted cholesterol efflux, partly via PPARα/RXR activation, while cholesterol biosynthesis/esterification was suppressed. Silencing of LRP-1 or inhibition of ABCA1 by probucol reversed Asx/Bex-mediated effects on levels of APP/Aβ species in pBCEC. Murine (m)BCEC isolated from 3xTg AD mice treated with Bex revealed elevated expression of APOE and ABCA1. Asx/Bex reduced BACE1 and increased LRP-1 expression in mBCEC from 3xTg AD mice when compared to vehicle-treated or non-Tg treated mice. In parallel, Asx/Bex reduced levels of Aβ oligomers in mBCEC and Aβ species in brain soluble and insoluble fractions of 3xTg AD mice. Our results suggest that both agonists exert beneficial effects at the BBB by balancing cholesterol homeostasis and enhancing clearance of Aβ from cerebrovascular endothelial cells.


Effects of spermidine supplementation on cognition and biomarkers in older adults with subjective cognitive decline (SmartAge)-study protocol for a randomized controlled trial.

  • Miranka Wirth‎ et al.
  • Alzheimer's research & therapy‎
  • 2019‎

Given the global increase in the aging population and age-related diseases, the promotion of healthy aging is one of the most crucial public health issues. This trial aims to contribute to the establishment of effective approaches to promote cognitive and brain health in older individuals with subjective cognitive decline (SCD). Presence of SCD is known to increase the risk of objective cognitive decline and progression to dementia due to Alzheimer's disease. Therefore, it is our primary goal to determine whether spermidine supplementation has a positive impact on memory performance in this at-risk group, as compared with placebo. The secondary goal is to examine the effects of spermidine intake on other neuropsychological, behavioral, and physiological parameters.


Aspirin impairs acetyl-coenzyme A metabolism in redox-compromised yeast cells.

  • Gianluca Farrugia‎ et al.
  • Scientific reports‎
  • 2019‎

Aspirin is a widely used anti-inflammatory and antithrombotic drug also known in recent years for its promising chemopreventive antineoplastic properties, thought to be mediated in part by its ability to induce apoptotic cell death. However, the full range of mechanisms underlying aspirin's cancer-preventive properties is still elusive. In this study, we observed that aspirin impaired both the synthesis and transport of acetyl-coenzyme A (acetyl-CoA) into the mitochondria of manganese superoxide dismutase (MnSOD)-deficient Saccharomyces cerevisiae EG110 yeast cells, but not of the wild-type cells, grown aerobically in ethanol medium. This occurred at both the gene level, as indicated by microarray and qRT-PCR analyses, and at the protein level as indicated by enzyme assays. These results show that in redox-compromised MnSOD-deficient yeast cells, but not in wild-type cells, aspirin starves the mitochondria of acetyl-CoA and likely causes energy failure linked to mitochondrial damage, resulting in cell death. Since acetyl-CoA is one of the least-studied targets of aspirin in terms of the latter's propensity to prevent cancer, this work may provide further mechanistic insight into aspirin's chemopreventive behavior with respect to early stage cancer cells, which tend to have downregulated MnSOD and are also redox-compromised.


Alternate Day Fasting Improves Physiological and Molecular Markers of Aging in Healthy, Non-obese Humans.

  • Slaven Stekovic‎ et al.
  • Cell metabolism‎
  • 2019‎

Caloric restriction and intermittent fasting are known to prolong life- and healthspan in model organisms, while their effects on humans are less well studied. In a randomized controlled trial study (ClinicalTrials.gov identifier: NCT02673515), we show that 4 weeks of strict alternate day fasting (ADF) improved markers of general health in healthy, middle-aged humans while causing a 37% calorie reduction on average. No adverse effects occurred even after >6 months. ADF improved cardiovascular markers, reduced fat mass (particularly the trunk fat), improving the fat-to-lean ratio, and increased β-hydroxybutyrate, even on non-fasting days. On fasting days, the pro-aging amino-acid methionine, among others, was periodically depleted, while polyunsaturated fatty acids were elevated. We found reduced levels sICAM-1 (an age-associated inflammatory marker), low-density lipoprotein, and the metabolic regulator triiodothyronine after long-term ADF. These results shed light on the physiological impact of ADF and supports its safety. ADF could eventually become a clinically relevant intervention.


Endonuclease G mediates α-synuclein cytotoxicity during Parkinson's disease.

  • Sabrina Büttner‎ et al.
  • The EMBO journal‎
  • 2013‎

Malfunctioning of the protein α-synuclein is critically involved in the demise of dopaminergic neurons relevant to Parkinson's disease. Nonetheless, the precise mechanisms explaining this pathogenic neuronal cell death remain elusive. Endonuclease G (EndoG) is a mitochondrially localized nuclease that triggers DNA degradation and cell death upon translocation from mitochondria to the nucleus. Here, we show that EndoG displays cytotoxic nuclear localization in dopaminergic neurons of human Parkinson-diseased patients, while EndoG depletion largely reduces α-synuclein-induced cell death in human neuroblastoma cells. Xenogenic expression of human α-synuclein in yeast cells triggers mitochondria-nuclear translocation of EndoG and EndoG-mediated DNA degradation through a mechanism that requires a functional kynurenine pathway and the permeability transition pore. In nematodes and flies, EndoG is essential for the α-synuclein-driven degeneration of dopaminergic neurons. Moreover, the locomotion and survival of α-synuclein-expressing flies is compromised, but reinstalled by parallel depletion of EndoG. In sum, we unravel a phylogenetically conserved pathway that involves EndoG as a critical downstream executor of α-synuclein cytotoxicity.


Endogenous hydrogen sulfide production is essential for dietary restriction benefits.

  • Christopher Hine‎ et al.
  • Cell‎
  • 2015‎

Dietary restriction (DR) without malnutrition encompasses numerous regimens with overlapping benefits including longevity and stress resistance, but unifying nutritional and molecular mechanisms remain elusive. In a mouse model of DR-mediated stress resistance, we found that sulfur amino acid (SAA) restriction increased expression of the transsulfuration pathway (TSP) enzyme cystathionine γ-lyase (CGL), resulting in increased hydrogen sulfide (H2S) production and protection from hepatic ischemia reperfusion injury. SAA supplementation, mTORC1 activation, or chemical/genetic CGL inhibition reduced H2S production and blocked DR-mediated stress resistance. In vitro, the mitochondrial protein SQR was required for H2S-mediated protection during nutrient/oxygen deprivation. Finally, TSP-dependent H2S production was observed in yeast, worm, fruit fly, and rodent models of DR-mediated longevity. Together, these data are consistent with evolutionary conservation of TSP-mediated H2S as a mediator of DR benefits with broad implications for clinical translation. PAPERFLICK:


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: