Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 164 papers

Toll like receptor 7 expressed by malignant cells promotes tumor progression and metastasis through the recruitment of myeloid derived suppressor cells.

  • Marion Dajon‎ et al.
  • Oncoimmunology‎
  • 2019‎

In non-small cell lung carcinoma (NSCLC), stimulation of toll-like receptor 7 (TLR7), a receptor for single stranded RNA, is linked to tumor progression and resistance to anticancer chemotherapy. However, the mechanism of this effect has been elusive. Here, using a murine model of lung adenocarcinoma, we demonstrate a key role for TLR7 expressed by malignant (rather than by stromal and immune) cells, in the recruitment of myeloid derived suppressor cells (MDSCs), induced after TLR7 stimulation, resulting in accelerated tumor growth and metastasis. In adenocarcinoma patients, high TLR7 expression on malignant cells was associated with poor clinical outcome, as well as with a gene expression signature linked to aggressiveness and metastastic dissemination with high abundance of mRNA encoding intercellular adhesion molecule 1 (ICAM-1), cytokeratins 7 and 19 (KRT-7 and 19), syndecan 4 (SDC4), and p53. In addition, lung tumors expressing high levels of TLR7 have a phenotype of epithelial mesenchymal transition with high expression of vimentin and low abundance of E-cadherin. These data reveal a crucial role for cancer cell-intrinsic TLR7 expression in lung adenocarcinoma progression.


Cytoplasmic STAT3 represses autophagy by inhibiting PKR activity.

  • Shensi Shen‎ et al.
  • Molecular cell‎
  • 2012‎

In a screen designed to identify novel inducers of autophagy, we discovered that STAT3 inhibitors potently stimulate the autophagic flux. Accordingly, genetic inhibition of STAT3 stimulated autophagy in vitro and in vivo, while overexpression of STAT3 variants, encompassing wild-type, nonphosphorylatable, and extranuclear STAT3, inhibited starvation-induced autophagy. The SH2 domain of STAT3 was found to interact with the catalytic domain of the eIF2α kinase 2 EIF2AK2, best known as protein kinase R (PKR). Pharmacological and genetic inhibition of STAT3 stimulated the activating phosphorylation of PKR and consequent eIF2α hyperphosphorylation. Moreover, PKR depletion inhibited autophagy as initiated by chemical STAT3 inhibitors or free fatty acids like palmitate. STAT3-targeting chemicals and palmitate caused the disruption of inhibitory STAT3-PKR interactions, followed by PKR-dependent eIF2α phosphorylation, which facilitates autophagy induction. These results unravel an unsuspected mechanism of autophagy control that involves STAT3 and PKR as interacting partners.


Lifespan extension by methionine restriction requires autophagy-dependent vacuolar acidification.

  • Christoph Ruckenstuhl‎ et al.
  • PLoS genetics‎
  • 2014‎

Reduced supply of the amino acid methionine increases longevity across species through an as yet elusive mechanism. Here, we report that methionine restriction (MetR) extends yeast chronological lifespan in an autophagy-dependent manner. Single deletion of several genes essential for autophagy (ATG5, ATG7 or ATG8) fully abolished the longevity-enhancing capacity of MetR. While pharmacological or genetic inhibition of TOR1 increased lifespan in methionine-prototroph yeast, TOR1 suppression failed to extend the longevity of methionine-restricted yeast cells. Notably, vacuole-acidity was specifically enhanced by MetR, a phenotype that essentially required autophagy. Overexpression of vacuolar ATPase components (Vma1p or Vph2p) suffices to increase chronological lifespan of methionine-prototrophic yeast. In contrast, lifespan extension upon MetR was prevented by inhibition of vacuolar acidity upon disruption of the vacuolar ATPase. In conclusion, autophagy promotes lifespan extension upon MetR and requires the subsequent stimulation of vacuolar acidification, while it is epistatic to the equally autophagy-dependent anti-aging pathway triggered by TOR1 inhibition or deletion.


A new paradigm for transcription factor TFIIB functionality.

  • Vladimir Gelev‎ et al.
  • Scientific reports‎
  • 2014‎

Experimental and bioinformatic studies of transcription initiation by RNA polymerase II (RNAP2) have revealed a mechanism of RNAP2 transcription initiation less uniform across gene promoters than initially thought. However, the general transcription factor TFIIB is presumed to be universally required for RNAP2 transcription initiation. Based on bioinformatic analysis of data and effects of TFIIB knockdown in primary and transformed cell lines on cellular functionality and global gene expression, we report that TFIIB is dispensable for transcription of many human promoters, but is essential for herpes simplex virus-1 (HSV-1) gene transcription and replication. We report a novel cell cycle TFIIB regulation and localization of the acetylated TFIIB variant on the transcriptionally silent mitotic chromatids. Taken together, these results establish a new paradigm for TFIIB functionality in human gene expression, which when downregulated has potent anti-viral effects.


Magnetomitotransfer: An efficient way for direct mitochondria transfer into cultured human cells.

  • Tanja Macheiner‎ et al.
  • Scientific reports‎
  • 2016‎

In the course of mitochondrial diseases standard care mostly focuses on treatment of symptoms, while therapeutic approaches aimed at restoring mitochondrial function are currently still in development. The transfer of healthy or modified mitochondria into host cells would open up the possibilities of new cell therapies. Therefore, in this study, a novel method of mitochondrial transfer is proposed by anti-TOM22 magnetic bead-labeled mitochondria with the assistance of a magnetic plate. In comparison to the passive transfer method, the magnetomitotransfer method was more efficient at transferring mitochondria into cells (78-92% vs 0-17% over 3 days). This transfer was also more rapid, with a high ratio of magnetomitotransferred cells and high density of transferred mitochondria within the first day of culture. Importantly, transferred mitochondria appeared to be functional as they strongly enhanced respiration in magnetomitotransferred cells. The novel method of magnetomitotransfer may offer potential for therapeutic approaches for treatment of a variety of mitochondria-associated pathologies, e.g. various neurodegenerative diseases.


Molecular dissection of colorectal cancer in pre-clinical models identifies biomarkers predicting sensitivity to EGFR inhibitors.

  • Moritz Schütte‎ et al.
  • Nature communications‎
  • 2017‎

Colorectal carcinoma represents a heterogeneous entity, with only a fraction of the tumours responding to available therapies, requiring a better molecular understanding of the disease in precision oncology. To address this challenge, the OncoTrack consortium recruited 106 CRC patients (stages I-IV) and developed a pre-clinical platform generating a compendium of drug sensitivity data totalling >4,000 assays testing 16 clinical drugs on patient-derived in vivo and in vitro models. This large biobank of 106 tumours, 35 organoids and 59 xenografts, with extensive omics data comparing donor tumours and derived models provides a resource for advancing our understanding of CRC. Models recapitulate many of the genetic and transcriptomic features of the donors, but defined less complex molecular sub-groups because of the loss of human stroma. Linking molecular profiles with drug sensitivity patterns identifies novel biomarkers, including a signature outperforming RAS/RAF mutations in predicting sensitivity to the EGFR inhibitor cetuximab.


The neuroprotective steroid progesterone promotes mitochondrial uncoupling, reduces cytosolic calcium and augments stress resistance in yeast cells.

  • Slaven Stekovic‎ et al.
  • Microbial cell (Graz, Austria)‎
  • 2017‎

The steroid hormone progesterone is not only a crucial sex hormone, but also serves as a neurosteroid, thus playing an important role in brain function. Epidemiological data suggest that progesterone improves the recovery of patients after traumatic brain injury. Brain injuries are often connected to elevated calcium spikes, reactive oxygen species (ROS) and programmed cell death affecting neurons. Here, we establish a yeast model to study progesterone-mediated cytoprotection. External supply of progesterone protected yeast cells from apoptosis-inducing stress stimuli and resulted in elevated mitochondrial oxygen uptake accompanied by a drop in ROS generation and ATP levels during chronological aging. In addition, cellular Ca2+ concentrations were reduced upon progesterone treatment, and this effect occurred independently of known Ca2+ transporters and mitochondrial respiration. All effects were also independent of Dap1, the yeast orthologue of the progesterone receptor. Altogether, our observations provide new insights into the cytoprotective effects of progesterone.


Reprimo tissue-specific expression pattern is conserved between zebrafish and human.

  • Ricardo J Figueroa‎ et al.
  • PloS one‎
  • 2017‎

Reprimo (RPRM), a member of the RPRM gene family, is a tumor-suppressor gene involved in the regulation of the p53-mediated cell cycle arrest at G2/M. RPRM has been associated with malignant tumor progression and proposed as a potential biomarker for early cancer detection. However, the expression and role of RPRM, as well as its family, are poorly understood and their physiology is as yet unstudied. In this scenario, a model system like the zebrafish could serve to dissect the role of the RPRM family members in vivo. Phylogenetic analysis reveals that RPRM and RPRML have been differentially retained by most species throughout vertebrate evolution, yet RPRM3 has been retained only in a small group of distantly related species, including zebrafish. Herein, we characterized the spatiotemporal expression of RPRM (present in zebrafish as an infraclass duplication rprma/rprmb), RPRML and RPRM3 in the zebrafish. By whole-mount in situ hybridization (WISH) and fluorescent in situ hybridization (FISH), we demonstrate that rprm (rprma/rprmb) and rprml show a similar spatiotemporal expression profile during zebrafish development. At early developmental stages rprmb is expressed in somites. After one day post-fertilization, rprm (rprma/rprmb) and rprml are expressed in the notochord, brain, blood vessels and digestive tube. On the other hand, rprm3 shows the most unique expression profile, being expressed only in the central nervous system (CNS). We assessed the expression patterns of RPRM gene transcripts in adult zebrafish and human RPRM protein product in tissue samples by RT-qPCR and immunohistochemistry (IHC) staining, respectively. Strikingly, tissue-specific expression patterns of the RPRM transcripts and protein are conserved between zebrafish and humans. We propose the zebrafish as a powerful tool to elucidate the both physiological and pathological roles of the RPRM gene family.


Trial watch: Cardiac glycosides and cancer therapy.

  • Laurie Menger‎ et al.
  • Oncoimmunology‎
  • 2013‎

Cardiac glycosides (CGs) are natural compounds sharing the ability to operate as potent inhibitors of the plasma membrane Na+/K+-ATPase, hence promoting-via an indirect mechanism-the intracellular accumulation of Ca2+ ions. In cardiomyocytes, increased intracellular Ca2+ concentrations exert prominent positive inotropic effects, that is, they increase myocardial contractility. Owing to this feature, two CGs, namely digoxin and digitoxin, have extensively been used in the past for the treatment of several cardiac conditions, including distinct types of arrhythmia as well as contractility disorders. Nowadays, digoxin is approved by the FDA and indicated for the treatment of congestive heart failure, atrial fibrillation and atrial flutter with rapid ventricular response, whereas the use of digitoxin has been discontinued in several Western countries. Recently, CGs have been suggested to exert potent antineoplastic effects, notably as they appear to increase the immunogenicity of dying cancer cells. In this Trial Watch, we summarize the mechanisms that underpin the unsuspected anticancer potential of CGs and discuss the progress of clinical studies that have evaluated/are evaluating the safety and efficacy of CGs for oncological indications.


Helicobacter pylori CagA protein targets the c-Met receptor and enhances the motogenic response.

  • Yuri Churin‎ et al.
  • The Journal of cell biology‎
  • 2003‎

Infection with the human microbial pathogen Helicobacter pylori is assumed to lead to invasive gastric cancer. We find that H. pylori activates the hepatocyte growth factor/scatter factor receptor c-Met, which is involved in invasive growth of tumor cells. The H. pylori effector protein CagA intracellularly targets the c-Met receptor and promotes cellular processes leading to a forceful motogenic response. CagA could represent a bacterial adaptor protein that associates with phospholipase Cgamma but not Grb2-associated binder 1 or growth factor receptor-bound protein 2. The H. pylori-induced motogenic response is suppressed and blocked by the inhibition of PLCgamma and of MAPK, respectively. Thus, upon translocation, CagA modulates cellular functions by deregulating c-Met receptor signaling. The activation of the motogenic response in H. pylori-infected epithelial cells suggests that CagA could be involved in tumor progression.


Morphological and molecular investigations of a microsporidium infecting the European grape vine moth, Lobesia botrana Den. et Schiff., and its taxonomic determination as Cystosporogenes legeri nov. comb.

  • Regina G Kleespies‎ et al.
  • Journal of invertebrate pathology‎
  • 2003‎

We have isolated a microsporidium from a laboratory stock of the European grape vine moth, Lobesia botrana Den. et Schiff. (Lepidoptera, Tortricidae). Screening of this stock showed an infection rate of more than 90%, whereas field collected larvae from three different locations in Rhineland-Palatinate (Germany) did not demonstrate any signs of infection. Light and electron microscopic investigations of infected insects showed that gross pathology, morphology, and ultrastructure of the microsporidium are similar to those described earlier for Pleistophora legeri. Comparative phylogenetic analysis of the small subunit rDNA using maximum likelihood, maximum parsimony, and neighbour joining distance methods showed that our isolate was closely related to Cystosporogenes operophterae. Based on our morphological and molecular investigations we propose to rename this species Cystosporogenes legeri nov. comb.


Viral killer toxins induce caspase-mediated apoptosis in yeast.

  • Jochen Reiter‎ et al.
  • The Journal of cell biology‎
  • 2005‎

In yeast, apoptotic cell death can be triggered by various factors such as H2O2, cell aging, or acetic acid. Yeast caspase (Yca1p) and cellular reactive oxygen species (ROS) are key regulators of this process. Here, we show that moderate doses of three virally encoded killer toxins (K1, K28, and zygocin) induce an apoptotic yeast cell response, although all three toxins differ significantly in their primary killing mechanisms. In contrast, high toxin concentrations prevent the occurrence of an apoptotic cell response and rather cause necrotic, toxin-specific cell killing. Studies with Deltayca1 and Deltagsh1 deletion mutants indicate that ROS accumulation as well as the presence of yeast caspase 1 is needed for apoptosis in toxin-treated yeast cells. We conclude that in the natural environment of toxin-secreting killer yeasts, where toxin concentration is usually low, induction of apoptosis might play an important role in efficient toxin-mediated cell killing.


Bim and Bmf synergize to induce apoptosis in Neisseria gonorrhoeae infection.

  • Oliver Kepp‎ et al.
  • PLoS pathogens‎
  • 2009‎

Bcl-2 family proteins including the pro-apoptotic BH3-only proteins are central regulators of apoptotic cell death. Here we show by a focused siRNA miniscreen that the synergistic action of the BH3-only proteins Bim and Bmf is required for apoptosis induced by infection with Neisseria gonorrhoeae (Ngo). While Bim and Bmf were associated with the cytoskeleton of healthy cells, they both were released upon Ngo infection. Loss of Bim and Bmf from the cytoskeleton fraction required the activation of Jun-N-terminal kinase-1 (JNK-1), which in turn depended on Rac-1. Depletion and inhibition of Rac-1, JNK-1, Bim, or Bmf prevented the activation of Bak and Bax and the subsequent activation of caspases. Apoptosis could be reconstituted in Bim-depleted and Bmf-depleted cells by additional silencing of antiapoptotic Mcl-1 and Bcl-X(L), respectively. Our data indicate a synergistic role for both cytoskeletal-associated BH3-only proteins, Bim, and Bmf, in an apoptotic pathway leading to the clearance of Ngo-infected cells.


Isolation of quiescent and nonquiescent cells from yeast stationary-phase cultures.

  • Chris Allen‎ et al.
  • The Journal of cell biology‎
  • 2006‎

Quiescence is the most common and, arguably, most poorly understood cell cycle state. This is in part because pure populations of quiescent cells are typically difficult to isolate. We report the isolation and characterization of quiescent and nonquiescent cells from stationary-phase (SP) yeast cultures by density-gradient centrifugation. Quiescent cells are dense, unbudded daughter cells formed after glucose exhaustion. They synchronously reenter the mitotic cell cycle, suggesting that they are in a G(0) state. Nonquiescent cells are less dense, heterogeneous, and composed of replicatively older, asynchronous cells that rapidly lose the ability to reproduce. Microscopic and flow cytometric analysis revealed that nonquiescent cells accumulate more reactive oxygen species than quiescent cells, and over 21 d, about half exhibit signs of apoptosis and necrosis. The ability to isolate both quiescent and nonquiescent yeast cells from SP cultures provides a novel, tractable experimental system for studies of quiescence, chronological and replicative aging, apoptosis, and the cell cycle.


Chlamydia trachomatis fails to protect its growth niche against pro-apoptotic insults.

  • Barbara S Sixt‎ et al.
  • Cell death and differentiation‎
  • 2019‎

Chlamydia trachomatis is an obligate intracellular bacterial agent responsible for ocular infections and sexually transmitted diseases. It has been postulated that Chlamydia inhibits apoptosis in host cells to maintain an intact replicative niche until sufficient infectious progeny can be generated. Here we report that, while cells infected with C. trachomatis are protected from apoptosis at early and mid-stages of infection, they remain susceptible to the induction of other cell death modalities. By monitoring the fate of infected cells by time-lapse video microscopy and by analyzing host plasma membrane integrity and the activity of caspases, we determined that C. trachomatis-infected cells exposed to pro-apoptotic stimuli predominately died by a mechanism resembling necrosis. This necrotic death of infected cells occurred with kinetics similar to the induction of apoptosis in uninfected cells, indicating that C. trachomatis fails to considerably prolong the lifespan of its host cell when exposed to pro-apoptotic insults. Inhibitors of bacterial protein synthesis partially blocked necrotic death of infected cells, suggesting that the switch from apoptosis to necrosis relies on an active contribution of the bacteria. Tumor necrosis factor alpha (TNF-α)-mediated induction of necrosis in cells infected with C. trachomatis was not dependent on canonical regulators of necroptosis, such as RIPK1, RIPK3, or MLKL, yet was blocked by inhibition or depletion of CASP8. These results suggest that alternative signaling pathways regulate necrotic death in the context of C. trachomatis infections. Finally, consistent with the inability of C. trachomatis to preserve host cell viability, necrosis resulting from pro-apoptotic conditions significantly impaired production of infectious progeny. Taken together, our findings suggest that Chlamydia's anti-apoptotic activities are not sufficient to protect the pathogen's replicative niche.


Phosphorylation of eukaryotic initiation factor-2α (eIF2α) in autophagy.

  • Juliette Humeau‎ et al.
  • Cell death & disease‎
  • 2020‎

The integrated stress response is characterized by the phosphorylation of eukaryotic initiation factor-2α (eIF2α) on serine 51 by one out of four specific kinases (EIF2AK1 to 4). Here we provide three series of evidence suggesting that macroautophagy (to which we refer to as autophagy) induced by a variety of distinct pharmacological agents generally requires this phosphorylation event. First, the induction of autophagic puncta by various distinct compounds was accompanied by eIF2α phosphorylation on serine 51. Second, the modulation of autophagy by >30 chemically unrelated agents was partially inhibited in cells expressing a non-phosphorylable (S51A) mutant of eIF2α or lacking all four eIF2α kinases, although distinct kinases were involved in the response to different autophagy inducers. Third, inhibition of eIF2α phosphatases was sufficient to stimulate autophagy. In synthesis, it appears that eIF2α phosphorylation is a central event for the stimulation of autophagy.


Control of lysosomal-mediated cell death by the pH-dependent calcium channel RECS1.

  • Philippe Pihán‎ et al.
  • Science advances‎
  • 2021‎

Programmed cell death is regulated by the balance between activating and inhibitory signals. Here, we have identified RECS1 (responsive to centrifugal force and shear stress 1) [also known as TMBIM1 (transmembrane BAX inhibitor motif containing 1)] as a proapoptotic member of the TMBIM family. In contrast to other proteins of the TMBIM family, RECS1 expression induces cell death through the canonical mitochondrial apoptosis pathway. Unbiased screening indicated that RECS1 sensitizes cells to lysosomal perturbations. RECS1 localizes to lysosomes, where it regulates their acidification and calcium content, triggering lysosomal membrane permeabilization. Structural modeling and electrophysiological studies indicated that RECS1 is a pH-regulated calcium channel, an activity that is essential to trigger cell death. RECS1 also sensitizes whole animals to stress in vivo in Drosophila melanogaster and zebrafish models. Our results unveil an unanticipated function for RECS1 as a proapoptotic component of the TMBIM family that ignites cell death programs at lysosomes.


Quantification of eIF2alpha phosphorylation during immunogenic cell death.

  • Lucillia Bezu‎ et al.
  • Methods in enzymology‎
  • 2019‎

Immunogenic cell death (ICD) is a particular modality of cell death that can be triggered by selected anticancer chemotherapeutics. Tumor cells undergoing ICD can induce an adaptive anticancer immune response that targets residual cancer cells with the same antigenic profile. The activation of a full-blown immune response against the tumor antigen is preceded by the release or exposure of danger associated molecular patterns (DAMPs) by tumor cells that stimulate the attraction, activation and maturation of dendritic cells and eventually the antigen-specific priming of cytotoxic T lymphocytes (CTLs). The phosphorylation of the eukaryotic translation initiation factor (EIF2A) is a pathognomonic characteristic of ICD, which governs the release/exposure of DAMPs such as ATP and calreticulin and thus the immunogenicity of cell death. Here we describe techniques to detect eIF2alpha phosphorylation for the assessment of ICD.


The NADH Dehydrogenase Nde1 Executes Cell Death after Integrating Signals from Metabolism and Proteostasis on the Mitochondrial Surface.

  • SreeDivya Saladi‎ et al.
  • Molecular cell‎
  • 2020‎

The proteolytic turnover of mitochondrial proteins is poorly understood. Here, we used a combination of dynamic isotope labeling and mass spectrometry to gain a global overview of mitochondrial protein turnover in yeast cells. Intriguingly, we found an exceptionally high turnover of the NADH dehydrogenase, Nde1. This homolog of the mammalian apoptosis inducing factor, AIF, forms two distinct topomers in mitochondria, one residing in the intermembrane space while the other spans the outer membrane and is exposed to the cytosol. The surface-exposed topomer triggers cell death in response to pro-apoptotic stimuli. The surface-exposed topomer is degraded by the cytosolic proteasome/Cdc48 system and the mitochondrial protease Yme1; however, it is strongly enriched in respiratory-deficient cells. Our data suggest that in addition to their role in electron transfer, mitochondrial NADH dehydrogenases such as Nde1 or AIF integrate signals from energy metabolism and cytosolic proteostasis to eliminate compromised cells from growing populations.


Isobacachalcone induces autophagy and improves the outcome of immunogenic chemotherapy.

  • Qi Wu‎ et al.
  • Cell death & disease‎
  • 2020‎

A number of natural plant products have a long-standing history in both traditional and modern medical applications. Some secondary metabolites induce autophagy and mediate autophagy-dependent healthspan- and lifespan-extending effects in suitable mouse models. Here, we identified isobacachalcone (ISO) as a non-toxic inducer of autophagic flux that acts on human and mouse cells in vitro, as well as mouse organs in vivo. Mechanistically, ISO inhibits AKT as well as, downstream of AKT, the mechanistic target of rapamycin complex 1 (mTORC1), coupled to the activation of the pro-autophagic transcription factors EB (TFEB) and E3 (TFE3). Cells equipped with a constitutively active AKT mutant failed to activate autophagy. ISO also stimulated the AKT-repressible activation of all three arms of the unfolded stress response (UPR), including the PERK-dependent phosphorylation of eukaryotic initiation factor 2α (eIF2α). Knockout of TFEB and/or TFE3 blunted the UPR, while knockout of PERK or replacement of eIF2α by a non-phosphorylable mutant reduced TFEB/TFE3 activation and autophagy induced by ISO. This points to crosstalk between the UPR and autophagy. Of note, the administration of ISO to mice improved the efficacy of immunogenic anticancer chemotherapy. This effect relied on an improved T lymphocyte-dependent anticancer immune response and was lost upon constitutive AKT activation in, or deletion of the essential autophagy gene Atg5 from, the malignant cells. In conclusion, ISO is a bioavailable autophagy inducer that warrants further preclinical characterization.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: