Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Adenosine A2A Receptors in the Rat Prelimbic Medial Prefrontal Cortex Control Delay-Based Cost-Benefit Decision Making.

  • Douglas T Leffa‎ et al.
  • Frontiers in molecular neuroscience‎
  • 2018‎

Adenosine A2A receptors (A2ARs) were recently described to control synaptic plasticity and network activity in the prefrontal cortex (PFC). We now probed the role of these PFC A2AR by evaluating the behavioral performance (locomotor activity, anxiety-related behavior, cost-benefit decision making and working memory) of rats upon downregulation of A2AR selectively in the prelimbic medial PFC (PLmPFC) via viral small hairpin RNA targeting the A2AR (shA2AR). The most evident alteration observed in shA2AR-treated rats, when compared to sh-control (shCTRL)-treated rats, was a decrease in the choice of the large reward upon an imposed delay of 15 s assessed in a T-maze-based cost-benefit decision-making paradigm, suggestive of impulsive decision making. Spontaneous locomotion in the open field was not altered, suggesting no changes in exploratory behavior. Furthermore, rats treated with shA2AR in the PLmPFC also displayed a tendency for higher anxiety levels in the elevated plus maze (less entries in the open arms), but not in the open field test (time spent in the center was not affected). Finally, working memory performance was not significantly altered, as revealed by the spontaneous alternation in the Y-maze test and the latency to reach the platform in the repeated trial Morris water maze. These findings constitute the first direct demonstration of a role of PFC A2AR in the control of behavior in physiological conditions, showing their major contribution for the control of delay-based cost-benefit decisions.


Phosphoproteomic Alterations of Ionotropic Glutamate Receptors in the Hippocampus of the Ts65Dn Mouse Model of Down Syndrome.

  • Macarena Gómez de Salazar‎ et al.
  • Frontiers in molecular neuroscience‎
  • 2018‎

Down syndrome (DS), the main genetic cause of intellectual disability, is associated with an imbalance of excitatory/inhibitory neurotransmitter systems. The phenotypic assessment and pharmacotherapy interventions in DS murine models strongly pointed out glutamatergic neurotransmission alterations (specially affecting ionotropic glutamate receptors [iGluRs]) that might contribute to DS pathophysiology, which is in agreement with DS condition. iGluRs play a critical role in fast-mediated excitatory transmission, a process underlying synaptic plasticity. Neuronal plasticity is biochemically modulated by post-translational modifications, allowing rapid and reversible adaptation of synaptic strength. Among these modifications, phosphorylation/dephosphorylation processes strongly dictate iGluR protein-protein interactions, cell surface trafficking, and subsynaptic mobility. Hence, we hypothesized that dysregulation of phosphorylation/dephosphorylation balance might affect neuronal function, which in turn could contribute to the glutamatergic neurotransmitter alterations observed in DS. To address this point, we biochemically purified subsynaptic hippocampal fractions from adult Ts65Dn mice, a trisomic mouse model recapitulating DS phenotypic alterations. Proteomic analysis showed significant alterations of the molecular composition of subsynaptic compartments of hippocampal trisomic neurons. Further, we characterized iGluR phosphopattern in the hippocampal glutamatergic synapse of trisomic mice. Phosphoenrichment-coupled mass spectrometry analysis revealed specific subsynaptic- and trisomy-associated iGluR phosphorylation signature, concomitant with differential subsynaptic kinase and phosphatase composition of Ts65Dn hippocampal subsynaptic compartments. Furthermore, biochemical data were used to build up a genotype-kinome-iGluR phosphopattern matrix in the different subsynaptic compartments. Overall, our results provide a precise profile of iGluR phosphopattern alterations in the glutamatergic synapse of the Ts65Dn mouse model and support their contribution to DS-associated synaptopathy. The alteration of iGluR phosphoresidues in Ts65Dn hippocampi, together with the kinase/phosphatase signature, identifies potential novel therapeutic targets for the treatment of glutamatergic dysfunctions in DS.


ATP Signaling Controlling Dyskinesia Through P2X7 Receptors.

  • Analu A Fonteles‎ et al.
  • Frontiers in molecular neuroscience‎
  • 2020‎

Dopamine replacement therapy with L-3,4-dihydroxyphenylalanine (L-DOPA) is the only temporary therapy for Parkinson's disease (PD), but it triggers dyskinesia over time. Since dyskinesia is associated with increased neuronal firing that bolsters purinergic signaling, we now tested whether the selective and blood-brain barrier-permeable P2X7 receptor antagonist Brilliant Blue-G (BBG, 22.5-45 mg/kg ip) attenuated behavioral, neurochemical and biochemical alterations in rats turned hemiparkinsonian upon unilateral striatal injection of 6-hydroxydopamine (6-OHDA) and treated daily with L-DOPA (30 mg/kg by gavage) for 22 days. The blockade of P2X7 receptors decreased L-DOPA-induced dyskinesia and motor incoordination in hemiparkinsonian rats. In parallel, BBG treatment rebalanced the altered dopamine D1 and D2 receptor density and signaling as well as some neuroinflammation-associated parameters in the striatum and substantia nigra. These findings herald a hitherto unrecognized role for purinergic signaling in the etiopathology of dyskinesia and prompt P2X7 receptor antagonists as novel candidate anti-dyskinesia drugs.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: