Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 8 papers out of 8 papers

Class II phosphoinositide 3-kinase C2β regulates a novel signaling pathway involved in breast cancer progression.

  • Anissa Chikh‎ et al.
  • Oncotarget‎
  • 2016‎

It is now well established that the enzymes phosphoinositide 3-kinases (PI3Ks) have a key role in the development and progression of many cancer types and indeed PI3Ks inhibitors are currently being tested in clinical trials. Although eight distinct PI3K isoforms exist, grouped into three classes, most of the evidence currently available are focused on one specific isoform with very little known about the potential role of the other members of this family in cancer. Here we demonstrate that the class II enzyme PI3K-C2β is overexpressed in several human breast cancer cell lines and in human breast cancer specimens. Our data indicate that PI3K-C2β regulates breast cancer cell growth in vitro and in vivo and that PI3K-C2β expression in breast tissues is correlated with the proliferative status of the tumor. Specifically we show that downregulation of PI3K-C2β in breast cancer cell lines reduces colony formation, induces cell cycle arrest and inhibits tumor growth, in particular in an estrogen-dependent in vivo xenograft. Investigation of the mechanism of the PI3K-C2β-dependent regulation of cell cycle progression and cell growth revealed that PI3K-C2β regulates cyclin B1 protein levels through modulation of microRNA miR-449a levels. Our data further demonstrate that downregulation of PI3K-C2β inhibits breast cancer cell invasion in vitro and breast cancer metastasis in vivo. Consistent with this, PI3K-C2β is highly expressed in lymph-nodes metastases compared to matching primary tumors. These data demonstrate that PI3K-C2β plays a pivotal role in breast cancer progression and in metastasis development. Our data indicate that PI3K-C2β may represent a key molecular switch that regulates a rate-limiting step in breast tumor progression and therefore it may be targeted to limit breast cancer spread.


High nuclear level of Vav1 is a positive prognostic factor in early invasive breast tumors: a role in modulating genes related to the efficiency of metastatic process.

  • Silvia Grassilli‎ et al.
  • Oncotarget‎
  • 2014‎

Vav1 is one of the signalling proteins normally restricted to hematopoietic cells that results ectopically expressed in solid tumors, including breast cancer. By immunohistochemical analysis on TMAs containing invasive breast tumor from patients without lymph node involvement, we have found that Vav1 is expressed in almost all investigated cancers and shows a peculiar localization inside the nucleus of tumor cells. High amounts of nuclear Vav1 are positively correlated with low incidence of relapse, regardless phenotype and molecular subtype of breast neoplasia. In particular, Kaplan-Meier plots showed an elevated risk of distant metastasis in patients with low Vav1 expression compared with patients with high Vav1 expression in their tumors. Experiments performed with breast tumor-derived cells indicated that Vav1 negatively modulates their invasiveness in vitro and their metastatic efficiency in vivo, possibly by affecting the expression of genes involved in invasion and/or metastasis of breast tumors. Since the high heterogeneity of breast tumors makes difficult to predict the evolution of early breast neoplasias, the evaluation of nuclear Vav1 levels may help in the characterization and management of early breast cancer patients. In particular, Vav1 may serve as a prognostic biomarker and a target for new therapies aimed to prevent breast cancer progression.


A combination of temsirolimus, an allosteric mTOR inhibitor, with clofarabine as a new therapeutic option for patients with acute myeloid leukemia.

  • Francesca Chiarini‎ et al.
  • Oncotarget‎
  • 2012‎

Signaling through the phosphatidylinositol 3-kinase (PI3K) pathway and its downstream effectors, Akt and mechanistic target of rapamycin (mTOR), is aberrantly activated in acute myeloid leukemia (AML) patients, where it contributes to leukemic cell proliferation, survival, and drug-resistance. Thus, inhibiting mTOR signaling in AML blasts could enhance their sensitivity to cytotoxic agents. Preclinical data also suggest that allosteric mTOR inhibition with rapamycin impaired leukemia initiating cells (LICs) function. In this study, we assessed the therapeutic potential of a combination consisting of temsirolimus [an allosteric mTOR complex 1 (mTORC1) inhibitor] with clofarabine, a nucleoside analogue with potent inhibitory effects on both ribonucleotide reductase and DNA polymerase. The drug combination (CLO-TOR) displayed synergistic cytotoxic effects against a panel of AML cell lines and primary cells from AML patients. Treatment with CLO-TOR induced a G₀/G₁-phase cell cycle arrest, apoptosis, and autophagy. CLO-TOR was pro-apoptotic in an AML patient blast subset (CD34⁺/CD38⁻/CD123⁺), which is enriched in putative leukemia initiating cells (LICs). In summary, the CLO-TOR combination could represent a novel valuable treatment for AML patients, also in light of its efficacy against LICs.


Resistance to glucose starvation as metabolic trait of platinum-resistant human epithelial ovarian cancer cells.

  • Anna Pastò‎ et al.
  • Oncotarget‎
  • 2017‎

Deregulated glucose metabolism is observed in cancer but whether this metabolic trait influences response to or is modulated by cytotoxic drugs is unknown. We show here that tumor cells from epithelial ovarian cancer (EOC) patients can be categorized, according to their in vitro viability under glucose starvation, into glucose deprivation-sensitive (glucose-addicted, GA) and glucose deprivation-resistant (glucose non-addicted, GNA). When EOC cells were cultured in the absence of glucose, all samples from platinum (PLT)-sensitive patients felt into the GA group; they disclosed higher expression of glucose metabolism enzymes, higher proliferation rates and in vitro sensitivity to PLT. Moreover, GA patients showed reduced multi-drug resistance pump expression and autophagy, compared to GNA samples. The close association between PLT sensitivity and glucose metabolic profile was confirmed in a xenograft model, where a stringent parallelism between PLT sensitivity/resistance and glucose metabolism was identified. Finally, in a cohort of naïve EOC patients categorized as GA or GNA at diagnosis, Kaplan Meier curves showed that the GA phenotype was associated with significantly better progression-free survival, compared to GNA patients.


Harnessing the PI3K/Akt/mTOR pathway in T-cell acute lymphoblastic leukemia: eliminating activity by targeting at different levels.

  • Daniela Bressanin‎ et al.
  • Oncotarget‎
  • 2012‎

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignant hematological disorder arising in the thymus from T-cell progenitors. T-ALL mainly affects children and young adults, and remains fatal in 20% of adolescents and 50% of adults, despite progress in polychemotherapy protocols. Therefore, innovative targeted therapies are desperately needed for patients with a dismal prognosis. Aberrant activation of PI3K/Akt/mTOR signaling is a common event in T-ALL patients and portends a poor prognosis. Preclinical studies have highlighted that modulators of PI3K/Akt/mTOR signaling could have a therapeutic relevance in T-ALL. However, the best strategy for inhibiting this highly complex signal transduction pathway is still unclear, as the pharmaceutical companies have disclosed an impressive array of small molecules targeting this signaling network at different levels. Here, we demonstrate that a dual PI3K/PDK1 inhibitor, NVP-BAG956, displayed the most powerful cytotoxic affects against T-ALL cell lines and primary patients samples, when compared with a pan class I PI3K inhibitor (GDC-0941), an allosteric Akt inhibitor (MK-2206), an mTORC1 allosteric inhibitor (RAD-001), or an ATP-competitive mTORC1/mTORC2 inhibitor (KU63794). Moreover, we also document that combinations of some of the aforementioned drugs strongly synergized against T-ALL cells at concentrations well below their respective IC50. This observation indicates that vertical inhibition at different levels of the PI3K/Akt/mTOR network could be considered as a future innovative strategy for treating T-ALL patients.


Platinum sensitivity and DNA repair in a recently established panel of patient-derived ovarian carcinoma xenografts.

  • Federica Guffanti‎ et al.
  • Oncotarget‎
  • 2018‎

A xenobank of patient-derived (PDX) ovarian tumor samples has been established consisting of tumors with different sensitivity to cisplatin (DDP), from very responsive to resistant. As the DNA repair pathway is an important driver in tumor response to DDP, we analyzed the mRNA expression of 20 genes involved in the nucleotide excision repair, fanconi anemia, homologous recombination, base excision repair, mismatch repair and translesion repair pathways and the methylation patterns of some of these genes. We also investigated the correlation with the response to platinum-based therapy. The mRNA levels of the selected genes were evaluated by Real Time-PCR (RT-PCR) with ad hoc validated primers and gene promoter methylation by pyrosequencing. All the DNA repair genes were variably expressed in all 42 PDX samples analyzed, with no particular histotype-specific pattern of expression. In high-grade serous/endometrioid PDXs, the CDK12 mRNA expression levels positively correlated with the expression of TP53BP1, PALB2, XPF and POLB. High-grade serous/endometrioid PDXs with TP53 mutations had significantly higher levels of POLQ, FANCD2, RAD51 and POLB than high-grade TP53 wild type PDXs. The mRNA levels of CDK12, PALB2 and XPF inversely associated with the in vivo DDP antitumor activity; higher CDK12 mRNA levels were associated with a higher recurrence rate in ovarian patients with low residual tumor. These data support the important role of CDK12 in the response to a platinum based therapy in ovarian patients.


Patient-derived ovarian cancer xenografts re-growing after a cisplatinum treatment are less responsive to a second drug re-challenge: a new experimental setting to study response to therapy.

  • Francesca Ricci‎ et al.
  • Oncotarget‎
  • 2017‎

Even if ovarian cancer patients are very responsive to a cisplatinum-based therapy, most will relapse with a resistant disease. New experimental animal models are needed to explore the mechanisms of resistance, to better tailor treatment and improve patient prognosis. To address these aims, seven patient-derived high-grade serous/endometrioid ovarian cancer xenografts were characterized for the antitumor response after one and two cycles of cisplatinum and classified as Very Responsive, Responsive, and Low Responsive to drug treatment. Xenografts re-growing after the first drug cycle were much less responsive to the second one. The expression of epithelial-mesenchymal transition (EMT) and cancer stem cells (CSCs) genes was investigated in cisplatinum-treated and not-treated tumors. We found that different EMT (TCF3, CAMK2N1, EGFR, and IGFBP4) and CSCs (SMO, DLL1, STAT3, and ITGA6) genes were expressed at higher levels in Low Responsive than in Responsive and Very Responsive xenografts. The expression of STAT3 was found to be associated with lower survival (HR = 13.7; p = 0.013) in the TCGA patient data set. MMP9, CD44, DLL4, FOXP1, MERTK, and PTPRC genes were found more expressed in tumors re-growing after cisplatinum treatment than in untreated tumors. We here describe a new in vivo ovarian carcinoma experimental setting that will be instrumental for specific trials of combination therapy to counteract cisplatinum resistance in order to improve the prognosis of ovarian patients.


EV20-Sap, a novel anti-HER-3 antibody-drug conjugate, displays promising antitumor activity in melanoma.

  • Emily Capone‎ et al.
  • Oncotarget‎
  • 2017‎

Melanoma is the most biologically aggressive skin cancer of well established constitutive and induced resistance to pharmacological treatment. Despite the recent progresses in immunotherapies, many advanced metastatic melanoma patients still face a significant mortality risk. The aggressive nature of this disease sustains an urgent need for more successful, effective drugs. HER-3 - one of the four member of the tyrosin kinase epidermal growth factor receptors (EGFRs) family- is frequently overexpressed in solid tumors, including melanoma. Moreover, up-regulation of HER-3 and its ligand NRGβ-1 are associated with poor prognosis, thus suggesting this receptor as a suitable target for cancer therapy. Several monoclonal antibodies targeting HER-3 are currently available, but preliminary results from clinical testing of these agents reveal a modest efficacy. Thus, a substantial improvement over this immunotherapeutic approach could be offered by an anti-HER-3 based Antibody-Drug Conjugate (ADC). In the present paper, we describe the generation of an ADC obtained by coupling the HER-3 targeting antibody EV20 linked to the plant toxin Saporin (Sap). In vitro, this ADC displays a powerful, specific and target-dependent cytotoxic activity which correlates with the degree of expression and internalization of HER-3 on tumor cells. Furthermore, in a murine melanoma model, EV20-Sap treatment leads to a significant reduction of the number of pulmonary metastasis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: