Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 40 papers

Differences in transcriptomic profile and IgA repertoire between jejunal and ileal Peyer's patches.

  • Benoît Levast‎ et al.
  • Developmental and comparative immunology‎
  • 2010‎

In many species such as sheep and pig, there are two types of Peyer's patches (PP): several discrete patches in the jejunum and a long and continuous patch in the ileum. Most of the immunoglobulin A in the gut is generated by B-cells in the PP germinal centers. Moreover, swine like ovine ileal PP might be important for antigen independent B-cell repertoire diversification. We examined, by quantitative real-time PCR, the expression of 36 transcripts of antimicrobial peptides, chemokines, interleukines, Toll-like receptors and transcription factors from both PP and we highlighted the differences by a principal component analysis. Ileal PP was characterized by a higher mRNA expression of CCL28, IL5, IL10, TLR2 and TLR4 while jejunal PP showed higher mRNA expression of antimicrobial peptides, CCL25, FOXP3, IL4, T-Bet, TSLP and SOCS2. Then, we analyzed some VDJ rearrangements to assess immunoglobulin repertoire diversity in jejunal and ileal PP from weaned piglets. The IgA and IgM repertoires were more diverse in ileal than in jejunal piglet PP. All these results could be related to the rarefaction of interfollicular T-cell zone and the presence in ileal versus jejunal lumen of a more diversified microflora. These findings shed a light on the functional differences between both PP.


Clinical protection against caprine herpesvirus 1 genital infection by intranasal administration of a live attenuated glycoprotein E negative bovine herpesvirus 1 vaccine.

  • Julien Thiry‎ et al.
  • BMC veterinary research‎
  • 2007‎

Caprine herpesvirus 1 (CpHV-1) is responsible of systemic diseases in kids and genital diseases leading to abortions in goats. CpHV-1 is widespread and especially in Mediterranean countries as Greece, Italy and Spain. CpHV-1 is antigenically and genetically closely related to bovine herpesvirus 1 (BoHV-1). Taking into account the biological properties shared by these two viruses, we decided in the current study to assess the protection of a live attenuated glycoprotein E (gE) negative BoHV-1 vaccine against a genital CpHV-1 infection in goats.


Chicken DNA Sensing cGAS-STING Signal Pathway Mediates Broad Spectrum Antiviral Functions.

  • Shuangjie Li‎ et al.
  • Vaccines‎
  • 2020‎

The innate DNA sensing receptors are one family of pattern recognition receptors and play important roles in antiviral infections, especially DNA viral infections. Among the multiple DNA sensors, cGAS has been studied intensively and is most defined in mammals. However, DNA sensors in chickens have not been much studied, and the chicken cGAS is still not fully understood. In this study, we investigated the chicken cGAS-STING signal axis, revealed its synergistic activity, species-specificity, and the signal essential sites in cGAS. Importantly, both cGAS and STING exhibited antiviral effects against DNA viruses, retroviruses, and RNA viruses, suggesting the broad range antiviral functions and the critical roles in chicken innate immunity.


Interleukins and large domestic animals, a bibliometric analysis.

  • Emmanuelle Moreau‎ et al.
  • Heliyon‎
  • 2017‎

Interleukins have been well described in mice and humans. In large domestic animals the situation is drastically different and there is still a need for further researches aiming at identifying all the homologous interleukins and comparing their functions among species. We performed here a bibliometric analysis of all interleukins described in the literature in various large animal species to identify what is known so far and to underline where there is a need for new studies. Using indicators such as H index but also M quotient, A index, G index, GH ratio, and HG index we ranked 39 interleukins identified so far in bovine, caprine, equine, ovine, and porcine, the main large domestic animals. Indexes and ratio under investigations were higher for IL1, IL2, IL4, IL5, IL6, IL8, IL10, IL12, and IL18 than for other interleukins, particularly in bovine and porcine species and to a certain extent in equine species. Recently discovered interleukins presented low values for the different indexes, quotient, and ratio. Even some "old" interleukins showed low values highlighting the need for further developments in comparative immunology. For instance an interleukin such as IL4 demonstrated variation in its functions between species. In conclusion, this study provides the first bibliometric analysis dedicated to large domestic animal interleukins and underlines the need for more studies to fully determine the structure and the functions of interleukins in other mammal species.


First demonstration of the circulation of a pneumovirus in French pigs by detection of anti-swine orthopneumovirus nucleoprotein antibodies.

  • Charles-Adrien Richard‎ et al.
  • Veterinary research‎
  • 2018‎

The presence of pneumoviruses in pigs is poorly documented. In this study, we used the published sequence of the nucleoprotein (N) of the recently identified Swine Orthopneumovirus (SOV) to express and purify SOV N as a recombinant protein in Escherichia coli. This protein was purified as nanorings and used to set up an enzyme-linked immunosorbent assay, which was used to analyse the presence of anti-pneumovirus N antibodies in swine sera. Sera collected from different pig farms in the West of France and from specific pathogen free piglets before colostrum uptake showed indirectly that a pneumovirus is circulating in pig populations with some variations between animals. Piglets before colostrum uptake were sero-negative for anti-pneumovirus antibodies while most of the other pigs showed positivity. Interestingly, in two farms presenting respiratory clinical signs and negative or under control for some common respiratory pathogens, pigs were detected positive for anti-pneumovirus antibodies. Globally, anti-pneumovirus N antibody concentrations were variable between and within farms. Further studies will aim to isolate the circulating virus and determine its potential pathogenicity. SOV could potentially become a new member of the porcine respiratory complex, important on its own or in association with other viral and bacterial micro-organisms.


African Swine Fever Virus A528R Inhibits TLR8 Mediated NF-κB Activity by Targeting p65 Activation and Nuclear Translocation.

  • Xueliang Liu‎ et al.
  • Viruses‎
  • 2021‎

African swine fever (ASF) is mainly an acute hemorrhagic disease which is highly contagious and lethal to domestic pigs and wild boars. The global pig industry has suffered significant economic losses due to the lack of an effective vaccine and treatment. The African swine fever virus (ASFV) has a large genome of 170-190 kb, encoding more than 150 proteins. During infection, ASFV evades host innate immunity via multiple viral proteins. A528R is a very important member of the polygene family of ASFV, which was shown to inhibit IFN-β production by targeting NF-κB, but its mechanism is not clear. This study has shown that A528R can suppress the TLR8-NF-κB signaling pathway, including the inhibition of downstream promoter activity, NF-κB p65 phosphorylation and nuclear translocation, and the antiviral and antibacterial activity. Further, we found the cellular co-localization and interaction between A528R and p65, and ANK repeat domains of A528R and RHD of p65 are involved in their interaction and the inhibition of p65 activity. Therefore, we conclude that A528R inhibits TLR8-NF-κB signaling by targeting p65 activation and nuclear translocation.


Identification of imidazoquinoline derivative (IQD) interacting sites of porcine TLR8 and the underlying species specificity.

  • Da Ao‎ et al.
  • Molecular immunology‎
  • 2021‎

Toll-like receptor 8 (TLR8), as an important innate immune receptor, can recognize specific ligands, activate intracellular signaling and produce an inflammatory response to kill and eliminate pathogenic microorganisms. Recent studies have resolved the crystal structure of human TLR8 (hTLR8) and two types of ligand binding sites were identified. Among the conserved binding site 1 of hTLR8, the residues interacting with imidazoquinoline derivatives (IQDs) were determined. We previously showed that porcine TLR8 (pTLR8) exhibited species specificity for recognition of the hTLR7 agonist imiquimod (R837). Given the species specificity, the pTLR8 residues interacting with IQDs may be different from hTLR8 counterparts. The present study was aimed to identify the pTLR8 residues interacting with small molecular IQDs. Via molecular docking, the pTLR8 residues interacting with R837 and R848 were predicted. The corresponding mutants were tested for pTLR8 signaling in response to IQDs R837, R848 and CL075, and the results showed that five of nine predicted residues (Y336, K341, K342, F395 and G562) are critical for pTLR8 signaling and these residues are partially different from those reported in hTLR8. Further, we found that the pTLR8 GQKNG motif corresponding to hTLR8 RQSYA exhibited disparity to CL075 stimulation. Our study thus reveals fine TLR8 species specificity which deepens the understanding of TLR8 activation mechanism.


Analysis of Porcine RIG-I Like Receptors Revealed the Positive Regulation of RIG-I and MDA5 by LGP2.

  • Shuangjie Li‎ et al.
  • Frontiers in immunology‎
  • 2021‎

The RLRs play critical roles in sensing and fighting viral infections especially RNA virus infections. Despite the extensive studies on RLRs in humans and mice, there is a lack of systemic investigation of livestock animal RLRs. In this study, we characterized the porcine RLR members RIG-I, MDA5 and LGP2. Compared with their human counterparts, porcine RIG-I and MDA5 exhibited similar signaling activity to distinct dsRNA and viruses, via similar and cooperative recognitions. Porcine LGP2, without signaling activity, was found to positively regulate porcine RIG-I and MDA5 in transfected porcine alveolar macrophages (PAMs), gene knockout PAMs and PK-15 cells. Mechanistically, LGP2 interacts with RIG-I and MDA5 upon cell activation, and promotes the binding of dsRNA ligand by MDA5 as well as RIG-I. Accordingly, porcine LGP2 exerted broad antiviral functions. Intriguingly, we found that porcine LGP2 mutants with defects in ATPase and/or dsRNA binding present constitutive activity which are likely through RIG-I and MDA5. Our work provided significant insights into porcine innate immunity, species specificity and immune biology.


Saccharomyces cerevisiae modulates immune gene expressions and inhibits ETEC-mediated ERK1/2 and p38 signaling pathways in intestinal epithelial cells.

  • Galliano Zanello‎ et al.
  • PloS one‎
  • 2011‎

Enterotoxigenic Escherichia coli (ETEC) infections result in large economic losses in the swine industry worldwide. ETEC infections cause pro-inflammatory responses in intestinal epithelial cells and subsequent diarrhea in pigs, leading to reduced growth rate and mortality. Administration of probiotics as feed additives displayed health benefits against intestinal infections. Saccharomyces cerevisiae (Sc) is non-commensal and non-pathogenic yeast used as probiotic in gastrointestinal diseases. However, the immuno-modulatory effects of Sc in differentiated porcine intestinal epithelial cells exposed to ETEC were not investigated.


Effect of Saccharomyces cerevisiae var. Boulardii and β-galactomannan oligosaccharide on porcine intestinal epithelial and dendritic cells challenged in vitro with Escherichia coli F4 (K88).

  • Roger Badia‎ et al.
  • Veterinary research‎
  • 2012‎

Probiotic and prebiotics, often called "immune-enhancing" feed additives, are believed to deal with pathogens, preventing the need of an immune response and reducing tissue damage. In this study, we investigated if a recently developed β-galactomannan (βGM) had a similar protective role compared to Saccharomyces cerevisiae var. Boulardii (Scb), a proven probiotic, in the context of enterotoxigenic Escherichia coli (ETEC) infection. ETEC causes inflammation, diarrhea and intestinal damage in piglets, resulting in large economic loses worldwide. We observed that Scb and βGM products inhibited in vitro adhesion of ETEC on cell surface of porcine intestinal IPI-2I cells. Our data showed that Scb and βGM decreased the mRNA ETEC-induced gene expression of pro-inflammatory cytokines TNF-α, IL-6, GM-CSF and chemokines CCL2, CCL20 and CXCL8 on intestinal IPI-2I. Furthermore, we investigated the putative immunomodulatory role of Scb and βGM on porcine monocyte-derived dendritic cells (DCs) per se and under infection conditions. We observed a slight up-regulation of mRNA for TNF-α and CCR7 receptor after co-incubation of DC with Scb and βGM. However, no differences were found in DC activation upon ETEC infection and Scb or βGM co-culture. Therefore, our results indicate that, similar to probiotic Scb, prebiotic βGM may protect intestinal epithelial cells against intestinal pathogens. Finally, although these products may modulate DC activation, their effect under ETEC challenge conditions remains to be elucidated.


Synthetic Cationic Peptide IDR-1002 and Human Cathelicidin LL37 Modulate the Cell Innate Response but Differentially Impact PRRSV Replication in vitro.

  • Benoît Levast‎ et al.
  • Frontiers in veterinary science‎
  • 2019‎

Host defense peptides (HDPs) show both antimicrobial and immunomodulatory properties making them important mediators of the host immune system. In humans but also in pigs many HDPs have been identified and important families such as cathelicidins and defensins have been established. In our study, we assessed: (i) the potential interactions that could occur between three peptides (LL37, PR39, and synthetic innate defense regulator (IDR)-1002) and a common TLR ligand called poly(I:C); (ii) the impact of selected peptides on the response of alveolar macrophage (AM) to poly(I:C) stimulation; (iii) the anti-porcine respiratory and reproductive syndrome virus (PRRSV) properties of the peptides; and (iv) their adjuvant potential in a PRRSV challenge experiment after immunization with different vaccine formulations. The results are as following: LL37, PR39, and IDR-1002 were able to interact with poly(I:C) using an agarose gel migration assay. Then, an alteration of AM's response to poly(I:C) stimulation was observed when the cells were co-stimulated with LL37 and IDR-1002. Regarding the anti-PRRSV potential of the peptides only LL37 showed a PRRSV inhibition in infected AM as well as precision cut lung slices (PCLS). However, in our conditions and despite their immunomodulatory properties, neither LL37 nor IDR-1002 showed any convincing potential as an adjuvant when associated to killed PRRSV in a challenge experiment. In conclusion, both antiviral and immunomodulatory properties could be identified for LL37, only immunomodulatory properties for IDR-1002, and both peptides failed to improve the immune response consecutive to an immunization with a killed vaccine in a PPRSV challenge experiment. However, further studies are needed to fully decipher and explain differences between peptide properties.


Screening of Porcine Innate Immune Adaptor Signaling Revealed Several Anti-PRRSV Signaling Pathways.

  • Yulin Xu‎ et al.
  • Vaccines‎
  • 2021‎

Porcine reproductive and respiratory syndrome virus (PRRSV) causes PRRS and is known to effectively suppress host innate immunity. The current strategies for controlling PRRSV are limited and complete understanding of anti-PRRSV innate immunity is needed. Here, we utilized nine porcine innate immune signaling adaptors which represent all currently known innate immune receptor signaling pathways for screening of anti-PRRSV activity. The analysis of PRRSV N gene transcription and protein expression both suggested that the multiple ectopic adaptors exhibited varying degrees of anti-PRRSV activities, with TRIF and MAVS most effective. To better quantify the PRRSV replication, the GFP signal of PRRSV from reverse genetics were measured by flow cytometry and similarly varying anti-PRRSV activities by different signaling adaptors were observed. Based on the screening data, and considering the importance of viral nucleic acid in innate immune response, endogenous TRIF, MAVS and STING were selected for further examination of anti-PRRSV activity. Agonist stimulation assay showed that MAVS and STING signaling possessed significant anti-PRRSV activities, whereas siRNA knockdown assay showed that TRIF, MAVS and STING are all involved in anti-PRRSV activity, with TLR3-TRIF displaying discrepancy in anti-PRRSV infection. Nevertheless, our work suggests that multiple pattern recognition receptor (PRR) signaling pathways are involved in anti-PRRSV innate immunity, which may have implications for the development of future antiviral strategies.


African Swine Fever Virus Structural Protein p17 Inhibits Cell Proliferation through ER Stress-ROS Mediated Cell Cycle Arrest.

  • Nengwen Xia‎ et al.
  • Viruses‎
  • 2020‎

African swine fever virus (ASFV) is a highly pathogenic large DNA virus that causes African swine fever (ASF) in domestic pigs and wild boars. The p17 protein, encoded by the D117L gene, is a major transmembrane protein of the capsid and the inner lipid envelope. The aim of this study was to investigate the effects of p17 on cell proliferation and the underlying mechanisms of action. The effects of p17 on cell proliferation, cell cycle, apoptosis, oxidative stress, and endoplasmic reticulum (ER) stress have been examined in 293T, PK15, and PAM cells, respectively. The results showed that p17 reduced cell proliferation by causing cell cycle arrest at G2/M phase. Further, p17-induced oxidative stress and increased the level of intracellular reactive oxygen species (ROS). Decreasing the level of ROS partially reversed the cell cycle arrest and prevented the decrease of cell proliferation induced by p17 protein. In addition, p17-induced ER stress, and alleviating ER stress decreased the production of ROS and prevented the decrease of cell proliferation induced by p17. Taken together, this study suggests that p17 can inhibit cell proliferation through ER stress and ROS-mediated cell cycle arrest, which might implicate the involvement of p17 in ASF pathogenesis.


Deoxynivalenol as a new factor in the persistence of intestinal inflammatory diseases: an emerging hypothesis through possible modulation of Th17-mediated response.

  • Patricia M Cano‎ et al.
  • PloS one‎
  • 2013‎

Deoxynivalenol (DON) is a mycotoxin produced by Fusarium species which is commonly found in temperate regions worldwide as a natural contaminant of cereals. It is of great concern not only in terms of economic losses but also in terms of animal and public health. The digestive tract is the first and main target of this food contaminant and it represents a major site of immune tolerance. A finely tuned cross-talk between the innate and the adaptive immune systems ensures the homeostatic equilibrium between the mucosal immune system and commensal microorganisms. The aim of this study was to analyze the impact of DON on the intestinal immune response.


Early immune response following Salmonella enterica subspecies enterica serovar Typhimurium infection in porcine jejunal gut loops.

  • François Meurens‎ et al.
  • Veterinary research‎
  • 2009‎

Salmonella enterica subspecies enterica serovar Typhimurium, commonly called S. Typhimurium, can cause intestinal infections in humans and various animal species such as swine. To analyze the host response to Salmonella infection in the pig we used an in vivo gut loop model, which allows the analysis of multiple immune responses within the same animal. Four jejunal gut-loops were each inoculated with 3 x 10(8) cfu of S. Typhimurium in 3 one-month-old piglets and mRNA expressions of various cytokines, chemokines, transcription factors, antimicrobial peptides, toll like and chemokine receptors were assessed by quantitative real-time PCR in the Peyer's patch and the gut wall after 24 h. Several genes such as the newly cloned CCRL1/CCX-CKR were assessed for the first time in the pig at the mRNA level. Pro-inflammatory and T-helper type-1 (Th1) cytokine mRNA were expressed at higher levels in infected compared to non-infected control loops. Similarly, some B cell activation genes, NOD2 and toll like receptor 2 and 4 transcripts were more expressed in both tissues while TLR5 mRNA was down-regulated. Interestingly, CCL25 mRNA expression as well as the mRNA expressions of its receptors CCR9 and CCRL1 were decreased both in the Peyer's patch and gut wall suggesting a potential Salmonella strategy to reduce lymphocyte homing to the intestine. In conclusion, these results provide insight into the porcine innate mucosal immune response to infection with entero-invasive microorganisms such as S. Typhimurium. In the future, this knowledge should help in the development of improved prophylactic and therapeutic approaches against porcine intestinal S. Typhimurium infections.


African Swine Fever Virus Structural Protein p17 Inhibits cGAS-STING Signaling Pathway Through Interacting With STING.

  • Wanglong Zheng‎ et al.
  • Frontiers in immunology‎
  • 2022‎

African swine fever virus (ASFV) encodes more than 150 proteins, which establish complex interactions with the host for the benefit of the virus in order to evade the host's defenses. However, currently, there is still a lack of information regarding the roles of the viral proteins in host cells. Here, our data demonstrated that ASFV structural protein p17 exerts a negative regulatory effect on cGAS-STING signaling pathway and the STING signaling dependent anti-HSV1 and anti-VSV functions. Further, the results indicated that ASFV p17 was located in ER and Golgi apparatus, and interacted with STING. ASFV p17 could interfere the STING to recruit TBK1 and IKKϵ through its interaction with STING. It was also suggested that the transmembrane domain (amino acids 39-59) of p17 is required for interacting with STING and inhibiting cGAS-STING pathway. Additionally, with the p17 specific siRNA, the ASFV induced IFN-β, ISG15, ISG56, IL-6 and IL-8 gene transcriptions were upregulated in ASFV infected primary porcine alveolar macrophages (PAMs). Taken together, ASFV p17 can inhibit the cGAS-STING pathway through its interaction with STING and interference of the recruitment of TBK1 and IKKϵ. Our work establishes the role of p17 in the immune evasion and thus provides insights on ASFV pathogenesis.


The Innate Immune DNA Sensing cGAS-STING Signaling Pathway Mediates Anti-PRRSV Function.

  • Yulin Xu‎ et al.
  • Viruses‎
  • 2021‎

Porcine reproductive and respiratory syndrome virus (PRRSV) modulates host innate immunity which plays a key role against PRRSV infection. As a RNA virus, PRRSV is mainly sensed by innate immune RNA receptors, whereas the role of innate immune DNA sensors in the PRRSV infection has not been elucidated. Here, we investigated the roles of DNA sensing cGAS-STING pathway in both PRRSV infected Marc-145 cells and porcine macrophages. The results show that in Marc-145 cells, the stable expression of STING with or without stimulations exhibited anti-PRRSV activity, and STING knockout heightened PRRSV infection. In CD163-3D4/21 porcine macrophages, either expression of STING or stimulation of cGAS-STING signaling obviously suppressed PRRSV infection, whereas in STING knockdown macrophages, the PRRSV infection was upregulated. Our results clearly demonstrate that the host cGAS-STING signal exerts an important antiviral role in PRRSV infection.


Porcine cGAS-STING signaling induced autophagy inhibits STING downstream IFN and apoptosis.

  • Nengwen Xia‎ et al.
  • Frontiers in immunology‎
  • 2022‎

The innate immune DNA sensing cGAS-STING signaling pathway has been widely recognized for inducing interferons (IFNs) and subsequent antiviral state. In addition to IFN, the cGAS-STING pathway also elicits other cell autonomous immunity events including autophagy and apoptosis. However, the downstream signaling events of this DNA sensing pathway in livestock have not been well defined. Here, we systematically analyzed the porcine STING (pSTING) induced IFN, autophagy and apoptosis, revealed the distinct dynamics of three STING downstream events, and established the IFN independent inductions of autophagy and apoptosis. Further, we investigated the regulation of autophagy on pSTING induced IFN and apoptosis. Following TBK1-IRF3-IFN activation, STING induced Atg5/Atg16L1 dependent autophagy through LIR motifs. In turn, the autophagy likely promoted the pSTING degradation, inhibited both IFN production and apoptosis, and thus restored the cell homeostasis. Therefore, this study sheds lights on the molecular mechanisms of innate immunity in pigs.


Marine-Sulfated Polysaccharides Extracts Exhibit Contrasted Time-Dependent Immunomodulatory and Antiviral Properties on Porcine Monocytes and Alveolar Macrophages.

  • Caroline Hervet‎ et al.
  • Animals : an open access journal from MDPI‎
  • 2022‎

Porcine respiratory complex syndrome has a strong economic impact on the swine breeding sector, as well as a clear repercussion on the wellbeing of the animals, leading to overuse of antimicrobial molecules. Algal extracts used in short-term treatments are empirically recognized by farmers as having a positive effect on pigs' health, however, their mechanisms of action are not well known and more research is needed. Herein we studied the short and median term impact of three algal extracts, in vitro, on the pro-inflammatory and antiviral responses of porcine primary blood monocytes and alveolar macrophages, as well as the susceptibility of the treated cells to infection by Porcine Respiratory and Reproductive Syndrome Virus (PRRSV) and the Aujeszky's Disease Virus (ADV). All extracts presented a pro-inflammatory short-term effect, associated for two of them, with an inhibition of the PRRSV replication. Conversely, the three extracts presented an anti-inflammatory median term effect, with no impact on PRRSV replication. The observed immune modulation prompts us to test, in vivo, the anti-PRRSV action of algal extracts and strengthen the interest for this natural resource.


The Pig: A Relevant Model for Evaluating the Neutrophil Serine Protease Activities during Acute Pseudomonas aeruginosa Lung Infection.

  • Claire Chevaleyre‎ et al.
  • PloS one‎
  • 2016‎

The main features of lung infection and inflammation are a massive recruitment of neutrophils and the subsequent release of neutrophil serine proteases (NSPs). Anti-infectious and/or anti-inflammatory treatments must be tested on a suitable animal model. Mice models do not replicate several aspects of human lung disease. This is particularly true for cystic fibrosis (CF), which has led the scientific community to a search for new animal models. We have shown that mice are not appropriate for characterizing drugs targeting neutrophil-dependent inflammation and that pig neutrophils and their NSPs are similar to their human homologues. We induced acute neutrophilic inflammatory responses in pig lungs using Pseudomonas aeruginosa, an opportunistic respiratory pathogen. Blood samples, nasal swabs and bronchoalveolar lavage fluids (BALFs) were collected at 0, 3, 6 and 24 h post-insfection (p.i.) and biochemical parameters, serum and BAL cytokines, bacterial cultures and neutrophil activity were evaluated. The release of proinflammatory mediators, biochemical and hematological blood parameters, cell recruitment and bronchial reactivity, peaked at 6h p.i.. We also used synthetic substrates specific for human neutrophil proteases to show that the activity of pig NSPs in BALFs increased. These proteases were also detected at the surface of lung neutrophils using anti-human NSP antibodies. Pseudomonas aeruginosa-induced lung infection in pigs results in a neutrophilic response similar to that described for cystic fibrosis and ventilator-associated pneumonia in humans. Altogether, this indicates that the pig is an appropriate model for testing anti-infectious and/or anti-inflammatory drugs to combat adverse proteolytic effects of neutrophil in human lung diseases.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: