Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 42 papers

NF-kappaB inhibition after neonatal cerebral hypoxia-ischemia improves long-term motor and cognitive outcome in rats.

  • Michael A van der Kooij‎ et al.
  • Neurobiology of disease‎
  • 2010‎

We recently demonstrated that inhibition of the NF-kappaB-pathway by the specific peptide inhibitor TAT-NBD markedly reduced cerebral injury in a rat model of perinatal hypoxic-ischemic (HI) brain damage. The aim of the current study was to assess whether neuroprotection by TAT-NBD is associated with long-term functional improvements after neonatal HI. Postnatal-day 7 rats subjected to HI showed motor deficits in the cylinder rearing test and adhesive removal task. HI-treated animals also showed cognitive impairments in a visuo-spatial learning task (modified hole board) as defined by an increased latency to complete this task and increased numbers of short- and long-term memory errors. HI animals treated with TAT-NBD [20mg/kg i.p.] at 0 and 3h post-HI did not show impairments in the cylinder rearing test, adhesive removal task and modified hole board. In conclusion, the almost complete reduction in lesion size observed after TAT-NBD treatment was associated with long-lasting normalization of sensorimotor and cognitive functions.


Lidocaine as treatment for neonatal seizures: Evaluation of previously developed population pharmacokinetic models and dosing regimen.

  • Laurent M A Favié‎ et al.
  • British journal of clinical pharmacology‎
  • 2020‎

Lidocaine is used to treat neonatal seizures refractory to other anticonvulsants. It is effective, but also associated with cardiac toxicity. Previous studies have reported on the pharmacokinetics of lidocaine in preterm and term neonates and proposed a dosing regimen for effective and safe lidocaine use. The objective of this study was to evaluate the previously developed pharmacokinetic models and dosing regimen. As a secondary objective, lidocaine effectiveness and safety were assessed.


Brain microstructural development in neonates with critical congenital heart disease: An atlas-based diffusion tensor imaging study.

  • Nathalie H P Claessens‎ et al.
  • NeuroImage. Clinical‎
  • 2019‎

Brain microstructural maturation progresses rapidly in the third trimester of gestation and first weeks of life, but typical microstructural development may be influenced by the presence of critical congenital heart disease (CHD).


A semi-mechanistic model based on glutathione depletion to describe intra-individual reduction in busulfan clearance.

  • Jurgen B Langenhorst‎ et al.
  • British journal of clinical pharmacology‎
  • 2020‎

To develop a semi-mechanistic model, based on glutathione depletion and predict a previously identified intra-individual reduction in busulfan clearance to aid in more precise dosing.


Prediction of cognitive and motor outcome of preterm infants based on automatic quantitative descriptors from neonatal MR brain images.

  • Pim Moeskops‎ et al.
  • Scientific reports‎
  • 2017‎

This study investigates the predictive ability of automatic quantitative brain MRI descriptors for the identification of infants with low cognitive and/or motor outcome at 2-3 years chronological age. MR brain images of 173 patients were acquired at 30 weeks postmenstrual age (PMA) (n = 86) and 40 weeks PMA (n = 153) between 2008 and 2013. Eight tissue volumes and measures of cortical morphology were automatically computed. A support vector machine classifier was employed to identify infants who exhibit low cognitive and/or motor outcome (<85) at 2-3 years chronological age as assessed by the Bayley scales. Based on the images acquired at 30 weeks PMA, the automatic identification resulted in an area under the receiver operation characteristic curve (AUC) of 0.78 for low cognitive outcome, and an AUC of 0.80 for low motor outcome. Identification based on the change of the descriptors between 30 and 40 weeks PMA (n = 66) resulted in an AUC of 0.80 for low cognitive outcome and an AUC of 0.85 for low motor outcome. This study provides evidence of the feasibility of identification of preterm infants at risk of cognitive and motor impairments based on descriptors automatically computed from images acquired at 30 and 40 weeks PMA.


Nutritional Intake, White Matter Integrity, and Neurodevelopment in Extremely Preterm Born Infants.

  • Lisa M Hortensius‎ et al.
  • Nutrients‎
  • 2021‎

Determining optimal nutritional regimens in extremely preterm infants remains challenging. This study aimed to evaluate the effect of a new nutritional regimen and individual macronutrient intake on white matter integrity and neurodevelopmental outcome.


Efficient lentiviral transduction method to gene modify cord blood CD8+ T cells for cancer therapy applications.

  • Vania Lo Presti‎ et al.
  • Molecular therapy. Methods & clinical development‎
  • 2021‎

Adoptive T cell therapy utilizing tumor-specific autologous T cells has shown promising results for cancer treatment. However, the limited numbers of autologous tumor-associated antigen (TAA)-specific T cells and the functional aberrancies, due to disease progression or treatment, remain factors that may significantly limit the success of the therapy. The use of allogeneic T cells, such as umbilical cord blood (CB) derived, overcomes these issues but requires gene modification to induce a robust and specific anti-tumor effect. CB T cells are readily available in CB banks and show low toxicity, high proliferation rates, and increased anti-leukemic effect upon transfer. However, the combination of anti-tumor gene modification and preservation of advantageous immunological traits of CB T cells represent major challenges for the harmonized production of T cell therapy products. In this manuscript, we optimized a protocol for expansion and lentiviral vector (LV) transduction of CB CD8+ T cells, achieving a transduction efficiency up to 83%. Timing of LV treatment, selection of culture media, and the use of different promoters were optimized in the transduction protocol. LentiBOOST was confirmed as a non-toxic transduction enhancer of CB CD8+ T cells, with minor effects on the proliferation capacity and cell viability of the T cells. Positively, the use of LentiBOOST does not affect the functionality of the cells, in the context of tumor cell recognition. Finally, CB CD8+ T cells were more amenable to LV transduction than peripheral blood (PB) CD8+ T cells and maintained a more naive phenotype. In conclusion, we show an efficient method to genetically modify CB CD8+ T cells using LV, which is especially useful for off-the-shelf adoptive cell therapy products for cancer treatment.


Mammillary body atrophy and other MRI correlates of school-age outcome following neonatal hypoxic-ischemic encephalopathy.

  • Kim V Annink‎ et al.
  • Scientific reports‎
  • 2021‎

The mammillary bodies (MB) and hippocampi are important for memory function and are often affected following neonatal hypoxic ischemic encephalopathy (HIE). The aim of this study was to assess neurodevelopmental outcome in 10-year-old children with HIE with and without therapeutic hypothermia. Additional aims were to assess the associations between MB atrophy, brain volumes (including the hippocampi), white matter microstructure and neurodevelopmental outcome at school-age. Ten-year-old children with HIE were included, who were treated with therapeutic hypothermia (n = 22) or would have qualified but were born before this became standard of care (n = 28). Children completed a neuropsychological and motor assessment and MRI. Mammillary bodies were scored as normal or atrophic at 10 years. Brain volumes were segmented on childhood MRI and DTI scans were analysed using tract-based spatial statistics. Children with HIE suffered from neurocognitive and memory problems at school-age, irrespective of hypothermia. Hippocampal volumes and MB atrophy were associated with total and performance IQ, processing speed and episodic memory in both groups. Normal MB and larger hippocampi were positively associated with global fractional anisotropy. In conclusion, injury to the MB and hippocampi was associated with neurocognition and memory at school-age in HIE and might be an early biomarker for neurocognitive and memory problems.


Sequential cranial ultrasound and cerebellar diffusion weighted imaging contribute to the early prognosis of neurodevelopmental outcome in preterm infants.

  • Margaretha J Brouwer‎ et al.
  • PloS one‎
  • 2014‎

To evaluate the contribution of sequential cranial ultrasound (cUS) and term-equivalent age magnetic resonance imaging (TEA-MRI) including diffusion weighted imaging (DWI) to the early prognosis of neurodevelopmental outcome in a cohort of very preterm infants (gestational age [GA] <31 weeks).


Implementation of a first-trimester prognostic model to improve screening for gestational diabetes mellitus.

  • Fieke van Hoorn‎ et al.
  • BMC pregnancy and childbirth‎
  • 2021‎

Improvement in the accuracy of identifying women who are at risk to develop gestational diabetes mellitus (GDM) is warranted, since timely diagnosis and treatment improves the outcomes of this common pregnancy disorder. Although prognostic models for GDM are externally validated and outperform current risk factor based selective approaches, there is little known about the impact of such models in day-to-day obstetric care.


Optimal fludarabine lymphodepletion is associated with improved outcomes after CAR T-cell therapy.

  • Vanessa A Fabrizio‎ et al.
  • Blood advances‎
  • 2022‎

Chimeric antigen receptor (CAR) T cells provide a therapeutic option in hematologic malignancies. However, treatment failure after initial response approaches 50%. In allogeneic hematopoietic cell transplantation, optimal fludarabine exposure improves immune reconstitution, resulting in lower nonrelapse mortality and increased survival. We hypothesized that optimal fludarabine exposure in lymphodepleting chemotherapy before CAR T-cell therapy would improve outcomes. In a retrospective analysis of patients with relapsed/refractory B-cell acute lymphoblastic leukemia undergoing CAR T-cell (tisagenlecleucel) infusion after cyclophosphamide/fludarabine lymphodepleting chemotherapy, we estimated fludarabine exposure as area under the curve (AUC; mg × h/L) using a validated population pharmacokinetic (PK) model. Fludarabine exposure was related to overall survival (OS), cumulative incidence of relapse (CIR), and a composite end point (loss of B-cell aplasia [BCA] or relapse). Eligible patients (n = 152) had a median age of 12.5 years (range, <1 to 26), response rate of 86% (n = 131 of 152), 12-month OS of 75.1% (95% confidence interval [CI], 67.6% to 82.6%), and 12-month CIR of 36.4% (95% CI, 27.5% to 45.2%). Optimal fludarabine exposure was determined as AUC ≥13.8 mg × h/L. In multivariable analyses, patients with AUC <13.8 mg × h/L had a 2.5-fold higher CIR (hazard ratio [HR], 2.45; 95% CI, 1.34-4.48; P = .005) and twofold higher risk of relapse or loss of BCA (HR, 1.96; 95% CI, 1.19-3.23; P = .01) compared with those with optimal fludarabine exposure. High preinfusion disease burden was also associated with increased risk of relapse (HR, 2.66; 95% CI, 1.45-4.87; P = .001) and death (HR, 4.77; 95% CI, 2.10-10.9; P < .001). Personalized PK-directed dosing to achieve optimal fludarabine exposure should be tested in prospective trials and, based on this analysis, may reduce disease relapse after CAR T-cell therapy.


Lymphoid and myeloid immune cell reconstitution after nicotinamide-expanded cord blood transplantation.

  • Coco de Koning‎ et al.
  • Bone marrow transplantation‎
  • 2021‎

Omidubicel (nicotinamide-expanded cord blood) is a potential alternative source for allogeneic hematopoietic cell transplantation (HCT) when an HLA-identical donor is lacking. A phase I/II trial with standalone omidubicel HCT showed rapid and robust neutrophil and platelet engraftment. In this study, we evaluated the immune reconstitution (IR) of patients receiving omidubicel grafts during the first 6 months post-transplant, as IR is critical for favorable outcomes of the procedure. Data was collected from the omidubicel phase I-II international, multicenter trial. The primary endpoint was the probability of achieving adequate CD4+ T-cell IR (CD4IR: > 50 × 106/L within 100 days). Secondary endpoints were the recovery of T-cells, natural killer (NK)-cells, B-cells, dendritic cells (DC), and monocytes as determined with multicolor flow cytometry. LOESS-regression curves and cumulative incidence plots were used for data description. Thirty-six omidubicel recipients (median 44; 13-63 years) were included, and IR data was available from 28 recipients. Of these patients, 90% achieved adequate CD4IR. Overall, IR was complete and consisted of T-cell, monocyte, DC, and notably fast NK- and B-cell reconstitution, compared to conventional grafts. Our data show that transplantation of adolescent and adult patients with omidubicel results in full and broad IR, which is comparable with IR after HCT with conventional graft sources.


Cord-Blood-Stem-Cell-Derived Conventional Dendritic Cells Specifically Originate from CD115-Expressing Precursors.

  • Maud Plantinga‎ et al.
  • Cancers‎
  • 2019‎

Dendritic cells (DCs) are professional antigen-presenting cells which instruct both the innate and adaptive immune systems. Once mature, they have the capacity to activate and prime naïve T cells for recognition and eradication of pathogens and tumor cells. These characteristics make them excellent candidates for vaccination strategies. Most DC vaccines have been generated from ex vivo culture of monocytes (mo). The use of mo-DCs as vaccines to induce adaptive immunity against cancer has resulted in clinical responses but, overall, treatment success is limited. The application of primary DCs or DCs generated from CD34⁺ stem cells have been suggested to improve clinical efficacy. Cord blood (CB) is a particularly rich source of CD34⁺ stem cells for the generation of DCs, but the dynamics and plasticity of the specific DC lineage development are poorly understood. Using flow sorting of DC progenitors from CB cultures and subsequent RNA sequencing, we found that CB-derived DCs (CB-DCs) exclusively originate from CD115⁺-expressing progenitors. Gene set enrichment analysis displayed an enriched conventional DC profile within the CD115-derived DCs compared with CB mo-DCs. Functional assays demonstrated that these DCs matured and migrated upon good manufacturing practice (GMP)-grade stimulation and possessed a high capacity to activate tumor-antigen-specific T cells. In this study, we developed a culture protocol to generate conventional DCs from CB-derived stem cells in sufficient numbers for vaccination strategies. The discovery of a committed DC precursor in CB-derived stem cell cultures further enables utilization of conventional DC-based vaccines to provide powerful antitumor activity and long-term memory immunity.


Prevention, Reduction and Repair of Brain Injury of the Preterm Infant.

  • Frank van Bel‎ et al.
  • Frontiers in physiology‎
  • 2019‎

Periventricular-intraventricular hemorrhages (PIVH) and (diffuse) white matter injury (WMI) are the most important acquired brain lesions of the very and extremely prematurely born neonate. Both carry a high risk for death or adverse neurodevelopmental outcome. The first part of the review discusses the standard of care and latest insights with respect to prevention and/or reduction of PIVH and WMI, taking into account their etiopathogenesis which is tightly linked to (functional) immaturity of the cerebral vascular bed and nervous system and commonly encountered inflammation. The second part discusses repair of hemorrhagic- ischemic and post-inflammatory brain lesions as it is an increasingly important topic in newborn medicine. In the near future trials of trophic and (autologous or allogenic) cell-therapy in infants at risk of or demonstrating established PIVH and WMI will be started. The focus of these potential trials will be discussed.


Peripheral neuropathy in metachromatic leukodystrophy: current status and future perspective.

  • Shanice Beerepoot‎ et al.
  • Orphanet journal of rare diseases‎
  • 2019‎

Metachromatic leukodystrophy (MLD) is an autosomal recessively inherited metabolic disease characterized by deficient activity of the lysosomal enzyme arylsulfatase A. Its deficiency results in accumulation of sulfatides in neural and visceral tissues, and causes demyelination of the central and peripheral nervous system. This leads to a broad range of neurological symptoms and eventually premature death. In asymptomatic patients with juvenile and adult MLD, treatment with allogeneic hematopoietic stem cell transplantation (HCT) provides a symptomatic and survival benefit. However, this treatment mainly impacts brain white matter, whereas the peripheral neuropathy shows no or only limited response. Data about the impact of peripheral neuropathy in MLD patients are currently lacking, although in our experience peripheral neuropathy causes significant morbidity due to neuropathic pain, foot deformities and neurogenic bladder disturbances. Besides, the reasons for residual and often progressive peripheral neuropathy after HCT are not fully understood. Preliminary studies suggest that peripheral neuropathy might respond better to gene therapy due to higher enzyme levels achieved than with HCT. However, histopathological and clinical findings also suggest a role of neuroinflammation in the pathology of peripheral neuropathy in MLD. In this literature review, we discuss clinical aspects, pathological findings, distribution of mutations, and treatment approaches in MLD with particular emphasis on peripheral neuropathy. We believe that future therapies need more emphasis on the management of peripheral neuropathy, and additional research is needed to optimize care strategies.


Two-dimensional ultrasound measurements vs. magnetic resonance imaging-derived ventricular volume of preterm infants with germinal matrix intraventricular haemorrhage.

  • Casper Beijst‎ et al.
  • Pediatric radiology‎
  • 2020‎

Post-haemorrhagic ventricular dilatation can be measured accurately by MRI. However, two-dimensional (2-D) cranial US can be used at the bedside on a daily basis.


Combined fetal inflammation and postnatal hypoxia causes myelin deficits and autism-like behavior in a rat model of diffuse white matter injury.

  • Erik van Tilborg‎ et al.
  • Glia‎
  • 2018‎

Diffuse white matter injury (WMI) is a serious problem in extremely preterm infants, and is associated with adverse neurodevelopmental outcome, including cognitive impairments and an increased risk of autism-spectrum disorders. Important risk factors include fetal or perinatal inflammatory insults and fluctuating cerebral oxygenation. However, the exact mechanisms underlying diffuse WMI are not fully understood and no treatment options are currently available. The use of clinically relevant animal models is crucial to advance knowledge on the pathophysiology of diffuse WMI, allowing the definition of novel therapeutic targets. In the present study, we developed a multiple-hit animal model of diffuse WMI by combining fetal inflammation and postnatal hypoxia in rats. We characterized the effects on white matter development and functional outcome by immunohistochemistry, MRI and behavioral paradigms. Combined fetal inflammation and postnatal hypoxia resulted in delayed cortical myelination, microglia activation and astrogliosis at P18, together with long-term changes in oligodendrocyte maturation as observed in 10 week old animals. Furthermore, rats with WMI showed impaired motor performance, increased anxiety and signs of autism-like behavior, i.e. reduced social play behavior and increased repetitive grooming. In conclusion, the combination of fetal inflammation and postnatal hypoxia in rats induces a pattern of brain injury and functional impairments that closely resembles the clinical situation of diffuse WMI. This animal model provides the opportunity to elucidate pathophysiological mechanisms underlying WMI, and can be used to develop novel treatment options for diffuse WMI in preterm infants.


Population pharmacokinetics of clofarabine for allogeneic hematopoietic cell transplantation in paediatric patients.

  • A Laura Nijstad‎ et al.
  • British journal of clinical pharmacology‎
  • 2021‎

Clofarabine has recently been evaluated as part of the conditioning regimen for allogeneic hematopoietic stem cell transplantation (HCT) in children. Pharmacokinetic (PK) exposure of different agents commonly used in conditioning regimens is strongly related to HCT outcome. Consequently, the PK of clofarabine may be important for outcome. This report describes the population PK of clofarabine in paediatric patients and one adult.


Nitric Oxide Synthase Inhibition as a Neuroprotective Strategy Following Hypoxic-Ischemic Encephalopathy: Evidence From Animal Studies.

  • Laurent M A Favié‎ et al.
  • Frontiers in neurology‎
  • 2018‎

Hypoxic-ischemic encephalopathy following perinatal asphyxia is a leading cause of neonatal death and disability worldwide. Treatment with therapeutic hypothermia reduced adverse outcomes from 60 to 45%. Additional strategies are urgently needed to further improve the outcome for these neonates. Inhibition of nitric oxide synthase (NOS) is a potential neuroprotective target. This article reviews the evidence of neuroprotection by nitric oxide (NO) synthesis inhibition in animal models.


Brain Activity and Cerebral Oxygenation After Perinatal Arterial Ischemic Stroke Are Associated With Neurodevelopment.

  • Nienke Wagenaar‎ et al.
  • Stroke‎
  • 2019‎

Background and Purpose- In infants with perinatal arterial ischemic stroke (PAIS), early prognosis of neurodevelopmental outcome is important to adequately inform parents and caretakers. Early continuous neuromonitoring after PAIS may improve early prognosis. Our aim was to study early cerebral electrical activity and oxygenation measured by amplitude-integrated electroencephalography (aEEG) and near-infrared spectroscopy in term neonates with PAIS and relate these to the development of cerebral palsy and cognitive deficit. Methods- aEEG patterns and regional cerebral oxygen saturation (rScO2) levels of both hemispheres were studied for 120 hours from the first clinical symptoms of PAIS (ie, seizures) onward. Multivariable analyses were used to investigate the association between aEEG, near-infrared spectroscopy, clinical variables, and neurodevelopmental outcome. Results- In 52 patients with PAIS (gestational age, 40.4±1.4 weeks; birth weight, 3282±479 g), median time to a continuous background pattern was longer in the ipsilesional compared with the contralesional hemisphere (13.5 versus 10.0 hours; P<0.05). rScO2 decreased over time in both hemispheres but less in the ipsilesional one, resulting in a rScO2 asymmetry ratio of 4.5% (interquartile range, -4.3% to 5.9%; P<0.05) between hemispheres from day 3 after symptoms onward. Both time to normal background pattern and asymmetry in rScO2 were negatively affected by gestational age, size of the PAIS, use of antiepileptic drugs, and mechanical ventilation. After correction for size of the PAIS on magnetic resonance imaging, a slower recovery of background pattern on ipsilesional aEEG and increased rScO2 asymmetry between hemispheres was related with an increased risk for cognitive deficit (<-1 SD) at a median of 24.0 (interquartile range, 18.4-24.4) months of age. Conclusions- Recovery of background pattern on aEEG and cerebral oxygenation are both affected by PAIS and related to neurocognitive development. Both measurements may provide valuable early prognostic information. Additionally, monitoring cerebral activity and oxygenation may be useful in identifying infants eligible for early neuroprotective interventions and to detect early effects of these interventions.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: