Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Mitochondrial Respiratory Complexes as Targets of Drugs: The PPAR Agonist Example.

  • Patrizia Bottoni‎ et al.
  • Cells‎
  • 2022‎

Mitochondrial bioenergetics are progressively acquiring significant pathophysiological roles. Specifically, mitochondria in general and Electron Respiratory Chain in particular are gaining importance as unintentional targets of different drugs. The so-called PPAR ligands are a class of drugs which not only link and activate Peroxisome Proliferator-Activated Receptors but also show a myriad of extrareceptorial activities as well. In particular, they were shown to inhibit NADH coenzyme Q reductase. However, the molecular picture of this intriguing bioenergetic derangement has not yet been well defined. Using high resolution respirometry, both in permeabilized and intact HepG2 cells, and a proteomic approach, the mitochondrial bioenergetic damage induced by various PPAR ligands was evaluated. Results show a derangement of mitochondrial oxidative metabolism more complex than one related to a simple perturbation of complex I. In fact, a partial inhibition of mitochondrial NADH oxidation seems to be associated not only with hampered ATP synthesis but also with a significant reduction in respiratory control ratio, spare respiratory capacity, coupling efficiency and, last but not least, serious oxidative stress and structural damage to mitochondria.


Silencing of Ago-2 Interacting Protein SERBP1 Relieves KCC2 Repression by miR-92 in Neurons.

  • Christian Barbato‎ et al.
  • Cells‎
  • 2022‎

RNA-binding proteins (RBPs) play important roles in modulating miRNA-mediated mRNA target repression. Argonaute2 (Ago2) is an essential component of the RNA-induced silencing complex (RISC) that plays a central role in silencing mechanisms via small non-coding RNA molecules known as siRNAs and miRNAs. Small RNAs loaded into Argonaute proteins catalyze endoribonucleolytic cleavage of target RNAs or recruit factors responsible for translational silencing and mRNA target destabilization. In previous studies we have shown that KCC2, a neuronal Cl (-) extruding K (+) Cl (-) co-transporter 2, is regulated by miR-92 in neuronal cells. Searching for Ago2 partners by immunoprecipitation and LC-MS/MS analysis, we isolated among other proteins the Serpine mRNA binding protein 1 (SERBP1) from SH-SY5Y neuroblastoma cells. Exploring the role of SERBP1 in miRNA-mediated gene silencing in SH-SY5Y cells and primary hippocampal neurons, we demonstrated that SERBP1 silencing regulates KCC2 expression through the 3' untranslated region (UTR). In addition, we found that SERBP1 as well as Ago2/miR-92 complex bind to KCC2 3'UTR. Finally, we demonstrated the attenuation of miR-92-mediated repression of KCC2 3'UTR by SERBP1 silencing. These findings advance our knowledge regarding the miR-92-mediated modulation of KCC2 translation in neuronal cells and highlight SERBP1 as a key component of this gene regulation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: