Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 29 papers

The V410L knockdown resistance mutation occurs in island and continental populations of Aedes aegypti in West and Central Africa.

  • Constância F J Ayres‎ et al.
  • PLoS neglected tropical diseases‎
  • 2020‎

The extensive use of insecticides for vector control has led to the development of insecticide resistance in Aedes aegypti populations on a global scale, which has significantly compromised control actions. Insecticide resistance, and its underlying mechanisms, has been investigated in several countries, mostly in South American and Asian countries. In Africa, however, studies reporting insecticide resistance are rare and data on resistance mechanisms, notably knockdown resistance (kdr) mutations, is scarce. In this study, the recently described V410L kdr mutation is reported for the first time in old world Ae. aegypti populations, namely from Angola and Madeira island. Two additional kdr mutations, V1016I and F1534C, are also reported for the first time in populations from Angola and Cape Verde. Significant associations with the resistance phenotype were found for both V410L and V1016I individually as well as for tri-locus genotypes in the Angolan population. However, no association was found in Madeira island, probably due to the presence of a complex pattern of multiple insecticide resistance mechanisms in the local Ae. aegypti population. These results suggest that populations carrying the same kdr mutations may respond differently to the same insecticide, stressing the need for complementary studies when assessing the impact of kdr resistance mechanisms in the outcome of insecticide-based control strategies.


Comparison of real time and malachite-green based loop-mediated isothermal amplification assays for the detection of Plasmodium vivax and P. falciparum.

  • Keare A Barazorda‎ et al.
  • PloS one‎
  • 2020‎

The current context of malaria elimination requires urgent development and implementation of highly sensitive and specific methods for prompt detection and treatment of malaria parasites. Such methods should overcome current delays in diagnosis, allow the detection of low-density infections and address the difficulties in accessing remote endemic communities. In this study, we assessed the performance of the RealAmp and malachite-green loop mediated isothermal amplification (MG-LAMP) methodologies, using microscopy and conventional nested-PCR as reference techniques. Both LAMP techniques were performed for Plasmodium genus, P. falciparum, and P. vivax identification using 136 whole blood samples collected from three communities located in the Peruvian Amazon basin. Turnaround time and costs of performing the LAMP assays were estimated and compared to that of microscopy and nested-PCR. Using nested-PCR as reference standard, we calculated the sensitivity, specificity and 95% confidence interval (CI) for all methods. RealAmp had a sensitivity of 92% (95% CI: 85-96.5%) and specificity of 100% (95% CI: 89.1-100%) for species detection; sensitivity and specificity of MG-LAMP were 94% (95% CI: 87.5-97.8%) and 100% (89.1-100%), respectively. Whereas microscopy showed 88.1% sensitivity (95% CI: 80.2-93.7%) and 100% specificity (95%: 89.1-100%). The turnaround time and costs of performing the LAMP assays were lower compared to those associated with nested-PCR but higher than those associated with microscopy. The two LAMP assays were shown to be more sensitive and simple to implement than microscopy. Both LAMP methodologies could be used as large-scale screening tests, but the MG-LAMP assay uses a simple, portable heat-block while the RealAmp requires a RealAmp machine or a real-time PCR machine. This makes the MG-LAMP an appropriate choice for malaria surveillance studies in endemic sites. Use of LAMP tests in active case detection of Plasmodium parasites could help to detect positive malaria cases early.


Plasmodium falciparum kelch 13 Mutations, 9 Countries in Africa, 2014-2018.

  • Sarah E Schmedes‎ et al.
  • Emerging infectious diseases‎
  • 2021‎

The spread of drug resistance to antimalarial treatments poses a serious public health risk globally. To combat this risk, molecular surveillance of drug resistance is imperative. We report the prevalence of mutations in the Plasmodium falciparum kelch 13 propeller domain associated with partial artemisinin resistance, which we determined by using Sanger sequencing samples from patients enrolled in therapeutic efficacy studies from 9 sub-Saharan countries during 2014-2018. Of the 2,865 samples successfully sequenced before treatment (day of enrollment) and on the day of treatment failure, 29 (1.0%) samples contained 11 unique nonsynonymous mutations and 83 (2.9%) samples contained 27 unique synonymous mutations. Two samples from Kenya contained the S522C mutation, which has been associated with delayed parasite clearance; however, no samples contained validated or candidate artemisinin-resistance mutations.


Genetic Analysis and Species Specific Amplification of the Artemisinin Resistance-Associated Kelch Propeller Domain in P. falciparum and P. vivax.

  • Eldin Talundzic‎ et al.
  • PloS one‎
  • 2015‎

Plasmodium falciparum resistance to artemisinin has emerged in the Greater Mekong Subregion and now poses a threat to malaria control and prevention. Recent work has identified mutations in the kelch propeller domain of the P. falciparum K13 gene to be associated artemisinin resistance as defined by delayed parasite clearance and ex vivo ring stage survival assays. Species specific primers for the two most prevalent human malaria species, P. falciparum and P. vivax, were designed and tested on multiple parasite isolates including human, rodent, and non- humans primate Plasmodium species. The new protocol described here using the species specific primers only amplified their respective species, P. falciparum and P. vivax, and did not cross react with any of the other human malaria Plasmodium species. We provide an improved species specific PCR and sequencing protocol that could be effectively used in areas where both P. falciparum and P. vivax are circulating. To design this improved protocol, the kelch gene was analyzed and compared among different species of Plasmodium. The kelch propeller domain was found to be highly conserved across the mammalian Plasmodium species.


Selection and spread of artemisinin-resistant alleles in Thailand prior to the global artemisinin resistance containment campaign.

  • Eldin Talundzic‎ et al.
  • PLoS pathogens‎
  • 2015‎

The recent emergence of artemisinin resistance in the Greater Mekong Subregion poses a major threat to the global effort to control malaria. Tracking the spread and evolution of artemisinin-resistant parasites is critical in aiding efforts to contain the spread of resistance. A total of 417 patient samples from the year 2007, collected during malaria surveillance studies across ten provinces in Thailand, were genotyped for the candidate Plasmodium falciparum molecular marker of artemisinin resistance K13. Parasite genotypes were examined for K13 propeller mutations associated with artemisinin resistance, signatures of positive selection, and for evidence of whether artemisinin-resistant alleles arose independently across Thailand. A total of seven K13 mutant alleles were found (N458Y, R539T, E556D, P574L, R575K, C580Y, S621F). Notably, the R575K and S621F mutations have previously not been reported in Thailand. The most prevalent artemisinin resistance-associated K13 mutation, C580Y, carried two distinct haplotype profiles that were separated based on geography, along the Thai-Cambodia and Thai-Myanmar borders. It appears these two haplotypes may have independent evolutionary origins. In summary, parasites with K13 propeller mutations associated with artemisinin resistance were widely present along the Thai-Cambodia and Thai-Myanmar borders prior to the implementation of the artemisinin resistance containment project in the region.


Field evaluation of a real time loop-mediated isothermal amplification assay (RealAmp) for malaria diagnosis in Cruzeiro do Sul, Acre, Brazil.

  • Giselle Maria Rachid Viana‎ et al.
  • PloS one‎
  • 2018‎

Conventional molecular methods, such as nested polymerase chain reaction (PCR), are very sensitive for detection of malaria parasites, but require advanced laboratory equipment and trained personnel. Real-time loop-mediated isothermal amplification (RealAmp), a loop-mediated isothermal amplification-based molecular tool (LAMP), facilitates rapid target amplification at a single temperature setting, reducing the need for sophisticated equipment. We evaluated the performance of a field-adapted RealAmp assay for malaria diagnosis in Cruzeiro do Sul, Acre State, Brazil, a remote area in Brazil with limited laboratory capabilities. We enrolled 1,000 patients with fever (axillary temperature ≥ 37.5 C) or history of fever in last 24 h presenting for malaria diagnosis from February through June 2015. DNA was extracted from dried blood spots using a boil and spin method (heat treatment) at the sample processing site, and also using commercial kits at a Brazilian national reference laboratory. RealAmp was performed for Plasmodium genus, P. falciparum, and P. vivax identification. In addition, Giemsa-stained blood smears were prepared and examined by two independent well-trained study microscopists. A combination of Real-time PCR and nested PCR was used as reference test. The sensitivity and specificity of RealAmp in the field site laboratory were 94.1% (95% confidence interval [CI]: 90.1-96.8) and 83.9% (95% CI: 81.1-86.4), respectively. The sensitivity and specificity of local microscopy were 87.7% (95% CI: 82.6-91.7) and 98.9% (95% CI: 97.8-99.4), respectively, while study microscopy showed sensitivity of 96.4% (95% CI: 93.0-98.4) and specificity of 98.2% (95% CI: 97.0-99.0). None of the three tests detected 20 P. falciparum and P. vivax mixed infections identified by the reference test. Our findings highlight that it is possible to implement simple molecular tests in facilities with limited resources such as Cruzeiro do Sul in Brazil. RealAmp sensitivity was similar to that of microscopy performed by skilled professionals; both RealAmp and study microscopy performed poorly in detection of mixed infection. Attempts to develop and evaluate simpler molecular tools should continue, especially for the detection of malaria infection in remote areas.


Evaluation of the Illumigene Malaria LAMP: A Robust Molecular Diagnostic Tool for Malaria Parasites.

  • Naomi W Lucchi‎ et al.
  • Scientific reports‎
  • 2016‎

Isothermal nucleic acid amplification assays such as the loop mediated isothermal amplification (LAMP), are well suited for field use as they do not require thermal cyclers to amplify the DNA. To further facilitate the use of LAMP assays in remote settings, simpler sample preparation methods and lyophilized reagents are required. The performance of a commercial malaria LAMP assay (Illumigene Malaria LAMP) was evaluated using two sample preparation workflows (simple filtration prep (SFP)) and gravity-driven filtration prep (GFP)) and pre-dispensed lyophilized reagents. Laboratory and clinical samples were tested in a field laboratory in Senegal and the results independently confirmed in a reference laboratory in the U.S.A. The Illumigene Malaria LAMP assay was easily implemented in the clinical laboratory and gave similar results to a real-time PCR reference test with limits of detection of ≤2.0 parasites/μl depending on the sample preparation method used. This assay reliably detected Plasmodium sp. parasites in a simple low-tech format, providing a much needed alternative to the more complex molecular tests for malaria diagnosis.


Specificity of the IgG antibody response to Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, and Plasmodium ovale MSP119 subunit proteins in multiplexed serologic assays.

  • Jeffrey W Priest‎ et al.
  • Malaria journal‎
  • 2018‎

Multiplex bead assays (MBA) that measure IgG antibodies to the carboxy-terminal 19-kDa sub-unit of the merozoite surface protein 1 (MSP119) are currently used to determine malaria seroprevalence in human populations living in areas with both stable and unstable transmission. However, the species specificities of the IgG antibody responses to the malaria MSP119 antigens have not been extensively characterized using MBA.


Prevalence of pfhrp2 and pfhrp3 gene deletions in Puerto Lempira, Honduras.

  • Joseph F Abdallah‎ et al.
  • Malaria journal‎
  • 2015‎

Recent studies have demonstrated the deletion of the histidine-rich protein 2 (PfHRP2) gene (pfhrp2) in field isolates of Plasmodium falciparum, which could result in false negative test results when PfHRP2-based rapid diagnostic tests (RDTs) are used for malaria diagnosis. Although primary diagnosis of malaria in Honduras is determined based on microscopy, RDTs may be useful in remote areas. In this study, it was investigated whether there are deletions of the pfhrp2, pfhrp3 and their respective flanking genes in 68 P. falciparum parasite isolates collected from the city of Puerto Lempira, Honduras. In addition, further investigation considered the possible correlation between parasite population structure and the distribution of these gene deletions by genotyping seven neutral microsatellites.


Bead-based immunoassay allows sub-picogram detection of histidine-rich protein 2 from Plasmodium falciparum and estimates reliability of malaria rapid diagnostic tests.

  • Eric Rogier‎ et al.
  • PloS one‎
  • 2017‎

Detection of histidine-rich protein 2 (HRP2) from the malaria parasite Plasmodium falciparum provides evidence for active or recent infection, and is utilized for both diagnostic and surveillance purposes, but current laboratory immunoassays for HRP2 are hindered by low sensitivities and high costs. Here we present a new HRP2 immunoassay based on antigen capture through a bead-based system capable of detecting HRP2 at sub-picogram levels. The assay is highly specific and cost-effective, allowing fast processing and screening of large numbers of samples. We utilized the assay to assess results of HRP2-based rapid diagnostic tests (RDTs) in different P. falciparum transmission settings, generating estimates for true performance in the field. Through this method of external validation, HRP2 RDTs were found to perform well in the high-endemic areas of Mozambique and Angola with 86.4% and 73.9% of persons with HRP2 in their blood testing positive by RDTs, respectively, and false-positive rates of 4.3% and 0.5%. However, in the low-endemic setting of Haiti, only 14.5% of persons found to be HRP2 positive by the bead assay were RDT positive. Additionally, 62.5% of Haitians showing a positive RDT test had no detectable HRP2 by the bead assay, likely indicating that these were false positive tests. In addition to RDT validation, HRP2 biomass was assessed for the populations in these different settings, and may provide an additional metric by which to estimate P. falciparum transmission intensity and measure the impact of interventions.


Genotyping Oral Commensal Bacteria to Predict Social Contact and Structure.

  • Stephen Starko Francis‎ et al.
  • PloS one‎
  • 2016‎

Social network structure is a fundamental determinant of human health, from infectious to chronic diseases. However, quantitative and unbiased approaches to measuring social network structure are lacking. We hypothesized that genetic relatedness of oral commensal bacteria could be used to infer social contact between humans, just as genetic relatedness of pathogens can be used to determine transmission chains of pathogens. We used a traditional, questionnaire survey-based method to characterize the contact network of the School of Public Health at a large research university. We then collected saliva from a subset of individuals to analyze their oral microflora using a modified deep sequencing multilocus sequence typing (MLST) procedure. We examined micro-evolutionary changes in the S. viridans group to uncover transmission patterns reflecting social network structure. We amplified seven housekeeping gene loci from the Streptococcus viridans group, a group of ubiquitous commensal bacteria, and sequenced the PCR products using next-generation sequencing. By comparing the generated S. viridans reads between pairs of individuals, we reconstructed the social network of the sampled individuals and compared it to the network derived from the questionnaire survey-based method. The genetic relatedness significantly (p-value < 0.001) correlated with social distance in the questionnaire-based network, and the reconstructed network closely matched the network derived from the questionnaire survey-based method. Oral commensal bacterial are thus likely transmitted through routine physical contact or shared environment. Their genetic relatedness can be used to represent a combination of social contact and shared physical space, therefore reconstructing networks of contact. This study provides the first step in developing a method to measure direct social contact based on commensal organism genotyping, potentially capable of unmasking hidden social networks that contribute to pathogen transmission.


Efficacy of artemether-lumefantrine, artesunate-amodiaquine, and dihydroartemisinin-piperaquine for treatment of uncomplicated Plasmodium falciparum malaria in Angola, 2015.

  • Mateusz M Plucinski‎ et al.
  • Malaria journal‎
  • 2017‎

Recent anti-malarial resistance monitoring in Angola has shown efficacy of artemether-lumefantrine (AL) in certain sites approaching the key 90% lower limit of efficacy recommended for artemisinin-based combination therapy. In addition, a controversial case of malaria unresponsive to artemisinins was reported in a patient infected in Lunda Sul Province in 2013.


Multiplex serology for impact evaluation of bed net distribution on burden of lymphatic filariasis and four species of human malaria in northern Mozambique.

  • Mateusz M Plucinski‎ et al.
  • PLoS neglected tropical diseases‎
  • 2018‎

Universal coverage with long-lasting insecticidal nets (LLINs) is a primary control strategy against Plasmodium falciparum malaria. However, its impact on the three other main species of human malaria and lymphatic filariasis (LF), which share the same vectors in many co-endemic areas, is not as well characterized. The recent development of multiplex antibody detection provides the opportunity for simultaneous evaluation of the impact of control measures on the burden of multiple diseases.


Using the Plasmodium mitochondrial genome for classifying mixed-species infections and inferring the geographical origin of P. falciparum parasites imported to the U.S.

  • Sarah E Schmedes‎ et al.
  • PloS one‎
  • 2019‎

The ability to identify mixed-species infections and track the origin of Plasmodium parasites can further enhance the development of treatment and prevention recommendations as well as outbreak investigations. Here, we explore the utility of using the full Plasmodium mitochondrial genome to classify Plasmodium species, detect mixed infections, and infer the geographical origin of imported P. falciparum parasites to the United States (U.S.). Using the recently developed standardized, high-throughput Malaria Resistance Surveillance (MaRS) protocol, the full Plasmodium mitochondrial genomes of 265 malaria cases imported to the U.S. from 2014-2017 were sequenced and analyzed. P. falciparum infections were found in 94.7% (251/265) of samples. Five percent (14/265) of samples were identified as mixed- Plasmodium species or non-P. falciparum, including P. vivax, P. malariae, P. ovale curtisi, and P. ovale wallikeri. P. falciparum mitochondrial haplotypes analysis revealed greater than eighteen percent of samples to have at least two P. falciparum mitochondrial genome haplotypes, indicating either heteroplasmy or multi-clonal infections. Maximum-likelihood phylogenies of 912 P. falciparum mitochondrial genomes with known country origin were used to infer the geographical origin of thirteen samples from persons with unknown travel histories as: Africa (country unspecified) (n = 10), Ghana (n = 1), Southeast Asia (n = 1), and the Philippines (n = 1). We demonstrate the utility and current limitations of using the Plasmodium mitochondrial genome to classify samples with mixed-infections and infer the geographical origin of imported P. falciparum malaria cases to the U.S. with unknown travel history.


Clearance dynamics of lactate dehydrogenase and aldolase following antimalarial treatment for Plasmodium falciparum infection.

  • Mateusz M Plucinski‎ et al.
  • Parasites & vectors‎
  • 2019‎

Lingering post-treatment parasite antigen in blood complicates malaria diagnosis through antigen detection. Characterization of antigen clearance dynamics is important for interpretation of positive antigen detection tests.


Spatio-temporal dynamics of Plasmodium falciparum transmission within a spatial unit on the Colombian Pacific Coast.

  • Angélica Knudson‎ et al.
  • Scientific reports‎
  • 2020‎

As malaria control programmes concentrate their efforts towards malaria elimination a better understanding of malaria transmission patterns at fine spatial resolution units becomes necessary. Defining spatial units that consider transmission heterogeneity, human movement and migration will help to set up achievable malaria elimination milestones and guide the creation of efficient operational administrative control units. Using a combination of genetic and epidemiological data we defined a malaria transmission unit as the area contributing 95% of malaria cases diagnosed at the catchment facility located in the town of Guapi in the South Pacific Coast of Colombia. We provide data showing that P. falciparum malaria transmission is heterogeneous in time and space and analysed, using topological data analysis, the spatial connectivity, at the micro epidemiological level, between parasite populations circulating within the unit. To illustrate the necessity to evaluate the efficacy of malaria control measures within the transmission unit in order to increase the efficiency of the malaria control effort, we provide information on the size of the asymptomatic reservoir, the nature of parasite genotypes associated with drug resistance as well as the frequency of the Pfhrp2/3 deletion associated with false negatives when using Rapid Diagnostic Tests.


Plasmodium falciparum pfhrp2 and pfhrp3 Gene Deletions and Relatedness to Other Global Isolates, Djibouti, 2019-2020.

  • Eric Rogier‎ et al.
  • Emerging infectious diseases‎
  • 2022‎

Deletions of pfhrp2 and paralogue pfhrp3 (pfhrp2/3) genes threaten Plasmodium falciparum diagnosis by rapid diagnostic test. We examined 1,002 samples from suspected malaria patients in Djibouti City, Djibouti, to investigate pfhrp2/3 deletions. We performed assays for Plasmodium antigen carriage, pfhrp2/3 genotyping, and sequencing for 7 neutral microsatellites to assess relatedness. By PCR assay, 311 (31.0%) samples tested positive for P. falciparum infection, and 296 (95.2%) were successfully genotyped; 37 (12.5%) samples were pfhrp2+/pfhrp3+, 51 (17.2%) were pfhrp2+/pfhrp3-, 5 (1.7%) were pfhrp2-/pfhrp3+, and 203 (68.6%) were pfhrp2-/pfhrp3-. Histidine-rich protein 2/3 antigen concentrations were reduced with corresponding gene deletions. Djibouti P. falciparum is closely related to Ethiopia and Eritrea parasites (pairwise GST 0.68 [Ethiopia] and 0.77 [Eritrea]). P. falciparum with deletions in pfhrp2/3 genes were highly prevalent in Djibouti City in 2019-2020; they appear to have arisen de novo within the Horn of Africa and have not been imported.


The temporal dynamics and infectiousness of subpatent Plasmodium falciparum infections in relation to parasite density.

  • Hannah C Slater‎ et al.
  • Nature communications‎
  • 2019‎

Malaria infections occurring below the limit of detection of standard diagnostics are common in all endemic settings. However, key questions remain surrounding their contribution to sustaining transmission and whether they need to be detected and targeted to achieve malaria elimination. In this study we analyse a range of malaria datasets to quantify the density, detectability, course of infection and infectiousness of subpatent infections. Asymptomatically infected individuals have lower parasite densities on average in low transmission settings compared to individuals in higher transmission settings. In cohort studies, subpatent infections are found to be predictive of future periods of patent infection and in membrane feeding studies, individuals infected with subpatent asexual parasite densities are found to be approximately a third as infectious to mosquitoes as individuals with patent (asexual parasite) infection. These results indicate that subpatent infections contribute to the infectious reservoir, may be long lasting, and require more sensitive diagnostics to detect them in lower transmission settings.


Variation in Plasmodium falciparum Histidine-Rich Protein 2 (Pfhrp2) and Plasmodium falciparum Histidine-Rich Protein 3 (Pfhrp3) Gene Deletions in Guyana and Suriname.

  • Sheila Akinyi Okoth‎ et al.
  • PloS one‎
  • 2015‎

Guyana and Suriname have made important progress in reducing the burden of malaria. While both countries use microscopy as the primary tool for clinical diagnosis, malaria rapid diagnostic tests (RDTs) are useful in remote areas of the interior where laboratory support may be limited or unavailable. Recent reports indicate that histidine-rich protein 2 (PfHRP2)-based diagnostic tests specific for detection of P. falciparum may provide false negative results in some parts of South America due to the emergence of P. falciparum parasites that lack the pfhrp2 gene, and thus produce no PfHRP2 antigen. Pfhrp2 and pfhrp3 genes were amplified in parasite isolates collected from Guyana and Suriname to determine if there were circulating isolates with deletions in these genes. Pfhrp3 deletions were monitored because some monoclonal antibodies utilized in PfHRP2-based RDTs cross-react with the PfHRP3 protein. We found that all 97 isolates from Guyana that met the inclusion criteria were both pfhrp2- and pfhrp3-positive. In Suriname (N = 78), 14% of the samples tested were pfhrp2-negative while 4% were pfhrp3-negative. Furthermore, analysis of the genomic region proximal to pfhrp2 and pfhrp3 revealed that genomic deletions extended to the flanking genes. We also investigated the population substructure of the isolates collected to determine if the parasites that had deletions of pfhrp2 and pfhrp3 belonged to any genetic subtypes. Cluster analysis revealed that there was no predominant P. falciparum population substructure among the isolates from either country, an indication of genetic admixture among the parasite populations. Furthermore, the pfhrp2-deleted parasites from Suriname did not appear to share a single, unique genetic background.


Efficacy and safety of artesunate-amodiaquine and artemether-lumefantrine and prevalence of molecular markers associated with resistance, Guinea: an open-label two-arm randomised controlled trial.

  • Abdoul Habib Beavogui‎ et al.
  • Malaria journal‎
  • 2020‎

Anti-malarial resistance is a threat to recent gains in malaria control. This study aimed to assess the efficacy and safety of artesunate-amodiaquine (ASAQ) and artemether-lumefantrine (AL) in the management of uncomplicated malaria and to measure the prevalence of molecular markers of resistance of Plasmodium falciparum in sentinel sites in Maferinyah and Labé Health Districts in Guinea in 2016.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: