Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 9 papers out of 9 papers

Neuron-Derived Neurotrophic Factor Is Mutated in Congenital Hypogonadotropic Hypogonadism.

  • Andrea Messina‎ et al.
  • American journal of human genetics‎
  • 2020‎

Congenital hypogonadotropic hypogonadism (CHH) is a rare genetic disorder characterized by infertility and the absence of puberty. Defects in GnRH neuron migration or altered GnRH secretion and/or action lead to a severe gonadotropin-releasing hormone (GnRH) deficiency. Given the close developmental association of GnRH neurons with the olfactory primary axons, CHH is often associated with anosmia or hyposmia, in which case it is defined as Kallmann syndrome (KS). The genetics of CHH are heterogeneous, and >40 genes are involved either alone or in combination. Several CHH-related genes controlling GnRH ontogeny encode proteins containing fibronectin-3 (FN3) domains, which are important for brain and neural development. Therefore, we hypothesized that defects in other FN3-superfamily genes would underlie CHH. Next-generation sequencing was performed for 240 CHH unrelated probands and filtered for rare, protein-truncating variants (PTVs) in FN3-superfamily genes. Compared to gnomAD controls the CHH cohort was statistically enriched for PTVs in neuron-derived neurotrophic factor (NDNF) (p = 1.40 × 10-6). Three heterozygous PTVs (p.Lys62∗, p.Tyr128Thrfs∗55, and p.Trp469∗, all absent from the gnomAD database) and an additional heterozygous missense mutation (p.Thr201Ser) were found in four KS probands. Notably, NDNF is expressed along the GnRH neuron migratory route in both mouse embryos and human fetuses and enhances GnRH neuron migration. Further, knock down of the zebrafish ortholog of NDNF resulted in altered GnRH migration. Finally, mice lacking Ndnf showed delayed GnRH neuron migration and altered olfactory axonal projections to the olfactory bulb; both results are consistent with a role of NDNF in GnRH neuron development. Altogether, our results highlight NDNF as a gene involved in the GnRH neuron migration implicated in KS.


A neurobiological pathway to smoking in adolescence: TTC12-ANKK1-DRD2 variants and reward response.

  • Christine Macare‎ et al.
  • European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology‎
  • 2018‎

The TTC12-ANKK1-DRD2 gene-cluster has been implicated in adult smoking. Here, we investigated the contribution of individual genes in the TTC12-ANKK1-DRD2 cluster in smoking and their association with smoking-associated reward processing in adolescence. A meta-analysis of TTC12-ANKK1-DRD2 variants and self-reported smoking behaviours was performed in four European adolescent cohorts (N = 14,084). The minor G-allele of rs2236709, mapping TTC12, was associated with self-reported smoking (p = 5.0 × 10-4) and higher plasma cotinine levels (p = 7.0 × 10-5). This risk allele was linked to an increased ventral-striatal blood-oxygen level-dependent (BOLD) response during reward anticipation (n = 1,263) and with higher DRD2 gene expression in the striatum (p = 0.013), but not with TTC12 or ANKK gene expression. These data suggest a role for the TTC12-ANKK1-DRD2 gene-cluster in adolescent smoking behaviours, provide evidence for the involvement of DRD2 in the early stages of addiction and support the notion that genetically-driven inter-individual differences in dopaminergic transmission mediate reward sensitivity and risk to smoking.


Origins, Development, and Compartmentation of the Granule Cells of the Cerebellum.

  • G Giacomo Consalez‎ et al.
  • Frontiers in neural circuits‎
  • 2020‎

Granule cells (GCs) are the most numerous cell type in the cerebellum and indeed, in the brain: at least 99% of all cerebellar neurons are granule cells. In this review article, we first consider the formation of the upper rhombic lip, from which all granule cell precursors arise, and the way by which the upper rhombic lip generates the external granular layer, a secondary germinal epithelium that serves to amplify the upper rhombic lip precursors. Next, we review the mechanisms by which postmitotic granule cells are generated in the external granular layer and migrate radially to settle in the granular layer. In addition, we review the evidence that far from being a homogeneous population, granule cells come in multiple phenotypes with distinct topographical distributions and consider ways in which the heterogeneity of granule cells might arise during development.


Two missense mutations in KCNQ1 cause pituitary hormone deficiency and maternally inherited gingival fibromatosis.

  • Johanna Tommiska‎ et al.
  • Nature communications‎
  • 2017‎

Familial growth hormone deficiency provides an opportunity to identify new genetic causes of short stature. Here we combine linkage analysis with whole-genome resequencing in patients with growth hormone deficiency and maternally inherited gingival fibromatosis. We report that patients from three unrelated families harbor either of two missense mutations, c.347G>T p.(Arg116Leu) or c.1106C>T p.(Pro369Leu), in KCNQ1, a gene previously implicated in the long QT interval syndrome. Kcnq1 is expressed in hypothalamic GHRH neurons and pituitary somatotropes. Co-expressing KCNQ1 with the KCNE2 β-subunit shows that both KCNQ1 mutants increase current levels in patch clamp analyses and are associated with reduced pituitary hormone secretion from AtT-20 cells. In conclusion, our results reveal a role for the KCNQ1 potassium channel in the regulation of human growth, and show that growth hormone deficiency associated with maternally inherited gingival fibromatosis is an allelic disorder with cardiac arrhythmia syndromes caused by KCNQ1 mutations.


Novel role for anti-Müllerian hormone in the regulation of GnRH neuron excitability and hormone secretion.

  • Irene Cimino‎ et al.
  • Nature communications‎
  • 2016‎

Anti-Müllerian hormone (AMH) plays crucial roles in sexual differentiation and gonadal functions. However, the possible extragonadal effects of AMH on the hypothalamic-pituitary-gonadal axis remain unexplored. Here we demonstrate that a significant subset of GnRH neurons both in mice and humans express the AMH receptor, and that AMH potently activates the GnRH neuron firing in mice. Combining in vivo and in vitro experiments, we show that AMH increases GnRH-dependent LH pulsatility and secretion, supporting a central action of AMH on GnRH neurons. Increased LH pulsatility is an important pathophysiological feature in many cases of polycystic ovary syndrome (PCOS), the most common cause of female infertility, in which circulating AMH levels are also often elevated. However, the origin of this dysregulation remains unknown. Our findings raise the intriguing hypothesis that AMH-dependent regulation of GnRH release could be involved in the pathophysiology of fertility and could hold therapeutic potential for treating PCOS.


Targeting the ERK Signaling Pathway in Melanoma.

  • Paola Savoia‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

The discovery of the role of the RAS/RAF/MEK/ERK pathway in melanomagenesis and its progression have opened a new era in the treatment of this tumor. Vemurafenib was the first specific kinase inhibitor approved for therapy of advanced melanomas harboring BRAF-activating mutations, followed by dabrafenib and encorafenib. However, despite the excellent results of first-generation kinase inhibitors in terms of response rate, the average duration of the response was short, due to the onset of genetic and epigenetic resistance mechanisms. The combination therapy with MEK inhibitors is an excellent strategy to circumvent drug resistance, with the additional advantage of reducing side effects due to the paradoxical reactivation of the MAPK pathway. The recent development of RAS and extracellular signal-related kinases (ERK) inhibitors promises to add new players for the ultimate suppression of this signaling pathway and the control of pathway-related drug resistance. In this review, we analyze the pharmacological, preclinical, and clinical trial data of the various MAPK pathway inhibitors, with a keen interest for their clinical applicability in the management of advanced melanoma.


Brain endothelial cells control fertility through ovarian-steroid-dependent release of semaphorin 3A.

  • Paolo Giacobini‎ et al.
  • PLoS biology‎
  • 2014‎

Neuropilin-1 (Nrp1) guides the development of the nervous and vascular systems, but its role in the mature brain remains to be explored. Here we report that the expression of the 65 kDa isoform of Sema3A, the ligand of Nrp1, by adult vascular endothelial cells, is regulated during the ovarian cycle and promotes axonal sprouting in hypothalamic neurons secreting gonadotropin-releasing hormone (GnRH), the neuropeptide controlling reproduction. Both the inhibition of Sema3A/Nrp1 signaling and the conditional deletion of Nrp1 in GnRH neurons counteract Sema3A-induced axonal sprouting. Furthermore, the localized intracerebral infusion of Nrp1- or Sema3A-neutralizing antibodies in vivo disrupts the ovarian cycle. Finally, the selective neutralization of endothelial-cell Sema3A signaling in adult Sema3aloxP/loxP mice by the intravenous injection of the recombinant TAT-Cre protein alters the amplitude of the preovulatory luteinizing hormone surge, likely by perturbing GnRH release into the hypothalamo-hypophyseal portal system. Our results identify a previously unknown function for 65 kDa Sema3A-Nrp1 signaling in the induction of axonal growth, and raise the possibility that endothelial cells actively participate in synaptic plasticity in specific functional domains of the adult central nervous system, thus controlling key physiological functions such as reproduction.


Reelin Can Modulate Migration of Olfactory Ensheathing Cells and Gonadotropin Releasing Hormone Neurons via the Canonical Pathway.

  • Leigh Dairaghi‎ et al.
  • Frontiers in cellular neuroscience‎
  • 2018‎

One key signaling pathway known to influence neuronal migration involves the extracellular matrix protein Reelin. Typically, signaling of Reelin occurs via apolipoprotein E receptor 2 (ApoER2) and very low-density lipoprotein receptor (VLDLR), and the cytoplasmic adapter protein disabled 1 (Dab1). However, non-canonical Reelin signaling has been reported, though no receptors have yet been identified. Cariboni et al. (2005) indicated Dab1-independent Reelin signaling impacts gonadotropin releasing hormone-1 (GnRH) neuronal migration. GnRH cells are essential for reproduction. Prenatal migration of GnRH neurons from the nasal placode to the forebrain, juxtaposed to olfactory axons and olfactory ensheathing cells (OECs), has been well documented, and it is clear that alterations in migration of these cells can cause delayed or absent puberty. This study was initiated to delineate the non-canonical Reelin signaling pathways used by GnRH neurons. Chronic treatment of nasal explants with CR-50, an antibody known to interfere with Reelin homopolymerization and Dab1 phosphorylation, decreased the distance GnRH neurons and OECs migrated. Normal migration of these two cell types was observed when Reelin was co-applied with CR-50. Immunocytochemistry was performed to determine if OECs might transduce Reelin signals via the canonical pathway, and subsequently indirectly altering GnRH neuronal migration. We show that in mouse: (1) both OECs and GnRH cells express ApoER2, VLDLR and Dab1, and (2) GnRH neurons and OECs show a normal distribution in the brain of two mutant reeler lines. These results indicate that the canonical Reelin pathway is present in GnRH neurons and OECs, but that Reelin is not essential for development of these two systems in vivo.


Reduced Granule Cell Proliferation and Molecular Dysregulation in the Cerebellum of Lysosomal Acid Phosphatase 2 (ACP2) Mutant Mice.

  • Xiaodan Jiao‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Lysosomal acid phosphatase 2 (Acp2) mutant mice (naked-ataxia, nax) have a severe cerebellar cortex defect with a striking reduction in the number of granule cells. Using a combination of in vivo and in vitro immunohistochemistry, Western blotting, BrdU assays, and RT-qPCR, we show downregulation of MYCN and dysregulation of the SHH signaling pathway in the nax cerebellum. MYCN protein expression is significantly reduced at P10, but not at the peak of proliferation at around P6 when the number of granule cells is strikingly reduced in the nax cerebellum. Despite the significant role of the SHH-MycN pathway in granule cell proliferation, our study suggests that a broader molecular pathway and additional mechanisms regulating granule cell development during the clonal expansion period are impaired in the nax cerebellum. In particular, our results indicate that downregulation of the protein synthesis machinery may contribute to the reduced number of granule cells in the nax cerebellum.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: