Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 12 papers out of 12 papers

Copy number variation in CEP57L1 predisposes to congenital absence of bilateral ACL and PCL ligaments.

  • Yichuan Liu‎ et al.
  • Human genomics‎
  • 2015‎

Absence of the anterior (ACL) or posterior cruciate ligament (PCL) are rare congenital malformations that result in knee joint instability, with a prevalence of 1.7 per 100,000 live births and can be associated with other lower-limb abnormalities such as ACL agnesia and absence of the menisci of the knee. While a few cases of absence of ACL/PCL are reported in the literature, a number of large familial case series of related conditions such as ACL agnesia suggest a potential underlying monogenic etiology. We performed whole exome sequencing of a family with two individuals affected by ACL/PCL.


Identification of Novel Loci Shared by Juvenile Idiopathic Arthritis Subtypes Through Integrative Genetic Analysis.

  • Jin Li‎ et al.
  • Arthritis & rheumatology (Hoboken, N.J.)‎
  • 2022‎

Juvenile idiopathic arthritis (JIA) is the most common chronic immune-mediated joint disease among children and encompasses a heterogeneous group of immune-mediated joint disorders classified into 7 subtypes according to clinical presentation. However, phenotype overlap and biologic evidence suggest a shared mechanistic basis between subtypes. This study was undertaken to systematically investigate shared genetic underpinnings of JIA subtypes.


Construction and Validation of a Lung Cancer Diagnostic Model Based on 6-Gene Methylation Frequency in Blood, Clinical Features, and Serum Tumor Markers.

  • Chunyan Kang‎ et al.
  • Computational and mathematical methods in medicine‎
  • 2021‎

Lung cancer has a high mortality rate. Promoting early diagnosis and screening of lung cancer is the most effective way to enhance the survival rate of lung cancer patients. Through computer technology, a comprehensive evaluation of genetic testing results and basic clinical information of lung cancer patients could effectively diagnose early lung cancer and indicate cancer risks. This study retrospectively collected 70 pairs of lung cancer tissue samples and normal human tissue samples. The methylation frequencies of 6 genes (FHIT, p16, MGMT, RASSF1A, APC, DAPK) in lung cancer patients, the basic clinical information, and tumor marker levels of these patients were analyzed. Then, the python package "sklearn" was employed to build a support vector machine (SVM) classifier which performed 10-fold cross-validation to construct diagnostic models that could identify lung cancer risk of suspected cases. Receiver operation characteristic (ROC) curves were drawn, and the performance of the combined diagnostic model based on several factors (clinical information, tumor marker level, and methylation frequency of 6 genes in blood) was shown to be better than that of models with only one pathological feature. The AUC value of the combined model was 0.963, and the sensitivity, specificity, and accuracy were 0.900, 0.971, and 0.936, respectively. The above results revealed that the diagnostic model based on these features was highly reliable, which could screen and diagnose suspected early lung cancer patients, contributing to increasing diagnosis rate and survival rate of lung cancer patients.


Rare copy number variants in over 100,000 European ancestry subjects reveal multiple disease associations.

  • Yun Rose Li‎ et al.
  • Nature communications‎
  • 2020‎

Copy number variants (CNVs) are suggested to have a widespread impact on the human genome and phenotypes. To understand the role of CNVs across human diseases, we examine the CNV genomic landscape of 100,028 unrelated individuals of European ancestry, using SNP and CGH array datasets. We observe an average CNV burden of ~650 kb, identifying a total of 11,314 deletion, 5625 duplication, and 2746 homozygous deletion CNV regions (CNVRs). In all, 13.7% are unreported, 58.6% overlap with at least one gene, and 32.8% interrupt coding exons. These CNVRs are significantly more likely to overlap OMIM genes (2.94-fold), GWAS loci (1.52-fold), and non-coding RNAs (1.44-fold), compared with random distribution (P < 1 × 10-3). We uncover CNV associations with four major disease categories, including autoimmune, cardio-metabolic, oncologic, and neurological/psychiatric diseases, and identify several drug-repurposing opportunities. Our results demonstrate robust frequency definition for large-scale rare variant association studies, identify CNVs associated with major disease categories, and illustrate the pleiotropic impact of CNVs in human disease.


A genome-wide association study of anorexia nervosa suggests a risk locus implicated in dysregulated leptin signaling.

  • Dong Li‎ et al.
  • Scientific reports‎
  • 2017‎

We conducted a genome-wide association study (GWAS) of anorexia nervosa (AN) using a stringently defined phenotype. Analysis of phenotypic variability led to the identification of a specific genetic risk factor that approached genome-wide significance (rs929626 in EBF1 (Early B-Cell Factor 1); P = 2.04 × 10-7; OR = 0.7; 95% confidence interval (CI) = 0.61-0.8) with independent replication (P = 0.04), suggesting a variant-mediated dysregulation of leptin signaling may play a role in AN. Multiple SNPs in LD with the variant support the nominal association. This demonstrates that although the clinical and etiologic heterogeneity of AN is universally recognized, further careful sub-typing of cases may provide more precise genomic signals. In this study, through a refinement of the phenotype spectrum of AN, we present a replicable GWAS signal that is nominally associated with AN, highlighting a potentially important candidate locus for further investigation.


On the generalizability of diffusion MRI signal representations across acquisition parameters, sequences and tissue types: Chronicles of the MEMENTO challenge.

  • Alberto De Luca‎ et al.
  • NeuroImage‎
  • 2021‎

Diffusion MRI (dMRI) has become an invaluable tool to assess the microstructural organization of brain tissue. Depending on the specific acquisition settings, the dMRI signal encodes specific properties of the underlying diffusion process. In the last two decades, several signal representations have been proposed to fit the dMRI signal and decode such properties. Most methods, however, are tested and developed on a limited amount of data, and their applicability to other acquisition schemes remains unknown. With this work, we aimed to shed light on the generalizability of existing dMRI signal representations to different diffusion encoding parameters and brain tissue types. To this end, we organized a community challenge - named MEMENTO, making available the same datasets for fair comparisons across algorithms and techniques. We considered two state-of-the-art diffusion datasets, including single-diffusion-encoding (SDE) spin-echo data from a human brain with over 3820 unique diffusion weightings (the MASSIVE dataset), and double (oscillating) diffusion encoding data (DDE/DODE) of a mouse brain including over 2520 unique data points. A subset of the data sampled in 5 different voxels was openly distributed, and the challenge participants were asked to predict the remaining part of the data. After one year, eight participant teams submitted a total of 80 signal fits. For each submission, we evaluated the mean squared error, the variance of the prediction error and the Bayesian information criteria. The received submissions predicted either multi-shell SDE data (37%) or DODE data (22%), followed by cartesian SDE data (19%) and DDE (18%). Most submissions predicted the signals measured with SDE remarkably well, with the exception of low and very strong diffusion weightings. The prediction of DDE and DODE data seemed more challenging, likely because none of the submissions explicitly accounted for diffusion time and frequency. Next to the choice of the model, decisions on fit procedure and hyperparameters play a major role in the prediction performance, highlighting the importance of optimizing and reporting such choices. This work is a community effort to highlight strength and limitations of the field at representing dMRI acquired with trending encoding schemes, gaining insights into how different models generalize to different tissue types and fiber configurations over a large range of diffusion encodings.


Copy number variations in alternative splicing gene networks impact lifespan.

  • Joseph T Glessner‎ et al.
  • PloS one‎
  • 2013‎

Longevity has a strong genetic component evidenced by family-based studies. Lipoprotein metabolism, FOXO proteins, and insulin/IGF-1 signaling pathways in model systems have shown polygenic variations predisposing to shorter lifespan. To test the hypothesis that rare variants could influence lifespan, we compared the rates of CNVs in healthy children (0-18 years of age) with individuals 67 years or older. CNVs at a significantly higher frequency in the pediatric cohort were considered risk variants impacting lifespan, while those enriched in the geriatric cohort were considered longevity protective variants. We performed a whole-genome CNV analysis on 7,313 children and 2,701 adults of European ancestry genotyped with 302,108 SNP probes. Positive findings were evaluated in an independent cohort of 2,079 pediatric and 4,692 geriatric subjects. We detected 8 deletions and 10 duplications that were enriched in the pediatric group (P=3.33×10(-8)-1.6×10(-2) unadjusted), while only one duplication was enriched in the geriatric cohort (P=6.3×10(-4)). Population stratification correction resulted in 5 deletions and 3 duplications remaining significant (P=5.16×10(-5)-4.26×10(-2)) in the replication cohort. Three deletions and four duplications were significant combined (combined P=3.7×10(-4)-3.9×10(-2)). All associated loci were experimentally validated using qPCR. Evaluation of these genes for pathway enrichment demonstrated ~50% are involved in alternative splicing (P=0.0077 Benjamini and Hochberg corrected). We conclude that genetic variations disrupting RNA splicing could have long-term biological effects impacting lifespan.


Stratifying ferroptosis sensitivity in cells and mouse tissues by photochemical activation of lipid peroxidation and fluorescent imaging.

  • Fengxiang Wang‎ et al.
  • STAR protocols‎
  • 2022‎

Ferroptosis is a non-apoptotic iron-dependent cell death. Here we present a protocol for stratifying ferroptosis sensitivity in cells and mouse tissues. This protocol uses photochemical activation of lipid peroxidation (PALP) coupled with fluorescent imaging to assess the relative sensitivity to ferroptosis. Using commercial reagents and common equipment, PALP is readily accessible to most laboratories. One remaining challenge is the inability to multiplex this technique in analyzing multiple tissues or regions simultaneously. This protocol may have applications in developing ferroptosis-targeted therapies. For complete details on the use and execution of this protocol, please refer to Wang et al. (2021).


An atypical form of AOA2 with myoclonus associated with mutations in SETX and AFG3L2.

  • Cecilia Mancini‎ et al.
  • BMC medical genetics‎
  • 2015‎

Hereditary ataxias are a heterogeneous group of neurodegenerative disorders, where exome sequencing may become an important diagnostic tool to solve clinically or genetically complex cases.


Identification of rare DNA sequence variants in high-risk autism families and their prevalence in a large case/control population.

  • Nori Matsunami‎ et al.
  • Molecular autism‎
  • 2014‎

Genetics clearly plays a major role in the etiology of autism spectrum disorders (ASDs), but studies to date are only beginning to characterize the causal genetic variants responsible. Until recently, studies using multiple extended multi-generation families to identify ASD risk genes had not been undertaken.


Association of a rare NOTCH4 coding variant with systemic sclerosis: a family-based whole exome sequencing study.

  • Christopher J Cardinale‎ et al.
  • BMC musculoskeletal disorders‎
  • 2016‎

Systemic sclerosis (SSc) is a rheumatologic disease with a multifactorial etiology. Genome-wide association studies imply a polygenic, complex mode of inheritance with contributions from variation at the human leukocyte antigen locus and non-coding variation at a locus on chromosome 6p21, among other modestly impactful loci. Here we describe an 8-year-old female proband presenting with diffuse cutaneous SSc/scleroderma and a family history of SSc in a grandfather and maternal aunt.


PALP: A rapid imaging technique for stratifying ferroptosis sensitivity in normal and tumor tissues in situ.

  • Fengxiang Wang‎ et al.
  • Cell chemical biology‎
  • 2022‎

Ferroptosis is an emerging cancer suppression strategy. However, how to select cancer patients for treating with ferroptosis inducers remains challenging. Here, we develop photochemical activation of membrane lipid peroxidation (PALP), which uses targeted lasers to induce localized polyunsaturated fatty acyl (PUFA)-lipid peroxidation for reporting ferroptosis sensitivity in cells and tissues. PALP captured by BODIPY-C11 can be suppressed by lipophilic antioxidants and iron chelation, and is dependent on PUFA-lipid levels. Moreover, we develop PALPv2, for studying lipid peroxidation on selected membranes along the z axis in live cells using two-photon microscopes. Using PALPv1, we detect PUFA-lipids in multiple tissues, and validate a PUFA-phospholipid reduction during muscle aging as previously reported. Patterns of PALPv1 signals across multiple cancer cell types in vitro and in vivo are concordant with their ferroptosis susceptibility and PUFA-phospholipid levels. We envision that PALP will enable rapid stratification of ferroptosis sensitivity in cancer patients and facilitate PUFA-lipid research.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: