Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,751 papers

Different evolutionary patterns between young duplicate genes in the human genome.

  • Peng Zhang‎ et al.
  • Genome biology‎
  • 2003‎

Following gene duplication, two duplicate genes may experience relaxed functional constraints or acquire different mutations, and may also diverge in function. Whether the two copies will evolve in different patterns remains unclear, however, because previous studies have reached conflicting conclusions. In order to resolve this issue, by providing a general picture, we studied 250 independent pairs of young duplicate genes from the whole human genome.


A new metabolite of nodakenetin by rat liver microsomes and its quantification by RP-HPLC method.

  • Peng Zhang‎ et al.
  • Biomedical chromatography : BMC‎
  • 2010‎

The biotransformation of nodakenetin (NANI) by rat liver microsomes in vitro was investigated. Two major polar metabolites were produced by liver microsomes from phenobarbital-pretreated rats and detected by reversed-phase high-performance liquid chromatography (RP-HPLC) analysis. The chemical structures of two metabolites were firmly identified as 3'(R)-hydroxy-nodakenetin-3'-ol and 3'(S)-hydroxy-nodakenetin-3'-ol, respectively, on the basis of their (1)H-NMR, MS and optical rotation analysis. The latter was a new compound. A sensitive, selective and simple RP-HPLC method has been developed for the simultaneous determination of NANI and its two major metabolites in rat liver microsomes. Chromatographic conditions comprise a C(18) column, a mobile phase with MeOH-H(2)O (40 : 60, v/v), a total run time of 40 min, and ultraviolet absorbance detection at 330 nm. In the rat heat-inactivated liver microsomal supernatant, the lower limits of detection and quantification of metabolite I, metabolite II and NANI were 5.0, 2.0, 10.0 ng/mL and 20.0, 5.0, 50.0 ng/mL, respectively, and their calibration curves were linear over the concentration range 50-400, 20-120 and 150-24000 ng/mL, respectively. The results provided a firm basis for further evaluating the pharmacokinetics and clinical efficacy of NANI.


Down-regulated miR-331-5p and miR-27a are associated with chemotherapy resistance and relapse in leukaemia.

  • Dan-Dan Feng‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2011‎

Multidrug resistance (MDR) and disease relapse are challenging clinical problems in the treatment of leukaemia. Relapsed disease is frequently refractory to chemotherapy and exhibits multiple drug resistance. Therefore, it is important to identify the mechanism by which cancer cells develop resistance. In this study, we used microRNA (miRNA) microarray and qRT-PCR approaches to investigate the expression of miRNAs in three leukaemia cell lines with different degrees of resistance to doxorubicin (DOX) compared with their parent cell line, K562. The expression of miR-331-5p and miR-27a was inversely correlated with the expression of a drug-resistant factor, P-glycoprotein (P-gp), in leukaemia cell lines with gradually increasing resistance. The development of drug resistance is regulated by the expression of the P-gp. Transfection of the K562 and, a human promyelocytic cell line (HL) HL60 DOX-resistant cells with miR-331-5p and miR-27a, separately or in combination, resulted in the increased sensitivity of cells to DOX, suggesting that correction of altered expression of miRNAs may be used for therapeutic strategies to overcome leukaemia cell resistance. Importantly, miR-331-5p and miR-27a were also expressed at lower levels in a panel of relapse patients compared with primary patients at diagnosis, further illustrating that leukaemia relapse might be a consequence of deregulation of miR-331-5p and miR-27a.


Orally active multi-functional antioxidants delay cataract formation in streptozotocin (type 1) diabetic and gamma-irradiated rats.

  • James Randazzo‎ et al.
  • PloS one‎
  • 2011‎

Age-related cataract is a worldwide health care problem whose progression has been linked to oxidative stress and the accumulation of redox-active metals. Since there is no specific animal model for human age-related cataract, multiple animal models must be used to evaluate potential therapies that may delay and/or prevent cataract formation.


Structures of FolT in substrate-bound and substrate-released conformations reveal a gating mechanism for ECF transporters.

  • Qin Zhao‎ et al.
  • Nature communications‎
  • 2015‎

Energy-coupling factor (ECF) transporters are a new family of ABC transporters that consist of four subunits, two cytoplasmic ATPases EcfA and EcfA' and two transmembrane proteins namely EcfS for substrate-specific binding and EcfT for energy coupling. Here, we report the 3.2-Å resolution crystal structure of the EcfS protein of a folate ECF transporter from Enterococcus faecalis-EfFolT, a close homologue of FolT from Lactobacillus brevis-LbFolT. Structural and biochemical analyses reveal the residues constituting the folate-binding pocket and determining the substrate-binding specificity. Structural comparison of the folate-bound EfFolT with the folate-free LbFolT contained in the holotransporter complex discloses significant conformational change at the L1 loop, and reveals a gating mechanism of ECF transporters in which the L1 loop of EcfS acts as a gate in the substrate binding and release.


Polymorphisms and plasma levels of IL-27: impact on genetic susceptibility and clinical outcome of bladder cancer.

  • Bin Zhou‎ et al.
  • BMC cancer‎
  • 2015‎

Interleukin-27 (IL-27) has been recognized as a pleiotropic cytokine with both pro- and anti-inflammatory properties. Few studies have investigated polymorphisms and serum/plasma levels of IL-27 in diseases including cancers. This study has analyzed the associations of IL-27 gene polymorphisms, as well as plasma levels of IL-27, with susceptibility to bladder cancer and clinical outcome.


Novelty seeking is related to individual risk preference and brain activation associated with risk prediction during decision making.

  • Ying Wang‎ et al.
  • Scientific reports‎
  • 2015‎

Novelty seeking (NS) is a personality trait reflecting excitement in response to novel stimuli. High NS is usually a predictor of risky behaviour such as drug abuse. However, the relationships between NS and risk-related cognitive processes, including individual risk preference and the brain activation associated with risk prediction, remain elusive. In this fMRI study, participants completed the Tridimensional Personality Questionnaire to measure NS and performed a probabilistic decision making task. Using a mathematical model, we estimated individual risk preference. Brain regions associated with risk prediction were determined via fMRI. The NS score showed a positive correlation with risk preference and a negative correlation with the activation elicited by risk prediction in the right posterior insula (r-PI), left anterior insula (l-AI), right striatum (r-striatum) and supplementary motor area (SMA). Within these brain regions, only the activation associated with risk prediction in the r-PI showed a correlation with NS after controlling for the effect of risk preference. Resting-state functional connectivity between the r-PI and r-striatum/l-AI was negatively correlated with NS. Our results suggest that high NS may be associated with less aversion to risk and that the r-PI plays an important role in relating risk prediction to NS.


1α,25-Dihydroxyvitamin D3 Induces Neutrophil Apoptosis through the p38 MAPK Signaling Pathway in Chronic Obstructive Pulmonary Disease Patients.

  • Haihua Yang‎ et al.
  • PloS one‎
  • 2015‎

Reduced neutrophil apoptosis plays an important role in the pathogenesis of acute exacerbation chronic obstructive pulmonary disease (AECOPD). The p38 mitogen-activated protein kinase (MAPK) signaling pathway is involved in neutrophil apoptosis. 1α,25-Dihydroxyvitamin D3 (1α,25VitD3) can induce tumor cell apoptosis. The aim of this study was to assess the effects of 1α,25VitD3 on peripheral blood neutrophil apoptosis in AECOPD and examine the role of the p38 MAPK signaling pathway.


Functional polymorphisms of ATP citrate lyase gene predicts clinical outcome of patients with advanced colorectal cancer.

  • Shuang Xie‎ et al.
  • World journal of surgical oncology‎
  • 2015‎

Previous studies have demonstrated that ATP citrate lyase (ACLY) plays an important role in the development of many cancers. Our current study aims to assess the effects of functional single nucleotide polymorphisms (SNPs) in ACLY gene on recurrence and survival of colorectal cancer (CRC) patients.


Possible single-nucleotide polymorphism loci associated with systemic sclerosis susceptibility: a genetic association study in a Chinese Han population.

  • Chang Shu‎ et al.
  • PloS one‎
  • 2014‎

The aim of this study was to confirm the association of RHOB and FAM167A-BLK gene polymorphisms with susceptibility to systemic sclerosis (SSc) in a Chinese Han population.


Overexpressed KDM5B is associated with the progression of glioma and promotes glioma cell growth via downregulating p21.

  • Bin Dai‎ et al.
  • Biochemical and biophysical research communications‎
  • 2014‎

Epigenetic alterations such as aberrant expression of histone-modifying enzymes have been implicated in tumorigenesis. Upregulation of lysine (K)-specific demethylase 5B (KDM5B) has been reported in a variety of malignant tumors. However, the impact of KDM5B in glioma remains unclear. The objective of this study was to investigate the expression and prognostic value of KDM5B in glioma. In clinical glioma samples, we found that KDM5B expression was significantly upregulated in cancer lesions compared with normal brain tissues. Kaplan-Meier analysis showed that patients with glioma and higher KDM5B expression tend to have shorter overall survival time. By silencing or overexpressing KDM5B in glioma cells, we found that KDM5B could promote cell growth both in vitro and in vivo. Moreover, we demonstrated that KDM5B promoted glioma proliferation partly via regulation of the expression of p21. Our study provided evidence that KDM5B functions as a novel tumor oncogene in glioma and may be a potential therapeutic target for glioma management.


The Groucho protein Grg4 suppresses Smad7 to activate BMP signaling.

  • Peng Zhang‎ et al.
  • Biochemical and biophysical research communications‎
  • 2013‎

Groucho related genes encode transcriptional repressor proteins critical for normal developmental processes. The bone morphogenetic proteins belong to the transforming growth factor-β (TGF-β) superfamily and play important signaling roles in development and disease. However, the regulation of BMP signaling, especially within cells, is largely unknown. In this report, we show that expression of the Groucho related gene Grg4 robustly activates the expression of a BMP reporter gene, as well as enhancing and sustaining the upregulation of the endogenous Id1 gene induced by BMP7. BMP7 administration did not affect the endogenous level of Grg4 nor did it enhance the phosphorylation of receptor activated Smad proteins. Rather, Grg4 expression reduced the levels of the endogenous inhibitory Smad7, thus increasing the transcriptional responses mediated by BMP responsive sequences. The data point to a novel mechanisms for attenuating BMP signaling through altering the ratio of activating versus inhibitory Smad proteins.


Brahma is essential for Drosophila intestinal stem cell proliferation and regulated by Hippo signaling.

  • Yunyun Jin‎ et al.
  • eLife‎
  • 2013‎

Chromatin remodeling processes are among the most important regulatory mechanisms in controlling cell proliferation and regeneration. Drosophila intestinal stem cells (ISCs) exhibit self-renewal potentials, maintain tissue homeostasis, and serve as an excellent model for studying cell growth and regeneration. In this study, we show that Brahma (Brm) chromatin-remodeling complex is required for ISC proliferation and damage-induced midgut regeneration in a lineage-specific manner. ISCs and enteroblasts exhibit high levels of Brm proteins; and without Brm, ISC proliferation and differentiation are impaired. Importantly, the Brm complex participates in ISC proliferation induced by the Scalloped-Yorkie transcriptional complex and that the Hippo (Hpo) signaling pathway directly restricted ISC proliferation by regulating Brm protein levels by inducing caspase-dependent cleavage of Brm. The cleavage resistant form of Brm protein promoted ISC proliferation. Our findings highlighted the importance of Hpo signaling in regulating epigenetic components such as Brm to control downstream transcription and hence ISC proliferation. DOI:http://dx.doi.org/10.7554/eLife.00999.001.


Ginsenoside Rg3 improves cardiac mitochondrial population quality: mimetic exercise training.

  • Mengwei Sun‎ et al.
  • Biochemical and biophysical research communications‎
  • 2013‎

Emerging evidence indicates exercise training could mediate mitochondrial quality control through the improvement of mitochondrial dynamics. Ginsenoside Rg3 (Rg3), one of the active ingredients in Panax ginseng, is well known in herbal medicine as a tonic and restorative agent. However, the molecular mechanism underlying the beneficial effects of Rg3 has been elusive. In the present study, we compared the effects of Rg3 administration with aerobic exercise on mitochondrial adaptation in cardiac muscle tissue of Sprague-Dawley (SD) rats. Three groups of SD rats were studied: (1) sedentary control, (2) Rg3-treated and (3) aerobic exercise trained. Both aerobic exercise training and Rg3 supplementation enhanced peroxisome proliferator-activated receptor coactivator 1 alpha (PGC-1α) and nuclear factor-E2-related factor 2 (Nrf2) protein levels in cardiac muscle. The activation of PGC-1α led to increased mRNA levels of mitochondrial transcription factor A (Tfam) and nuclear related factor 1(Nrf1), these changes were accompanied by increases in mitochondrial DNA copy number and complex protein levels, while activation of Nrf2 increased levels of phase II detoxifying enzymes, including nicotinamide adenine dinucleotide phosphate:quinone oxidoreductase 1(NQO1), superoxide dismutase (MnSOD) and catalase. Aerobic exercise also enhanced mitochondrial autophagy pathway activity, including increased conversion of LC3-I to LC3-II and greater expression of beclin1 and autophagy-related protein 7 (ATG7), these effects of aerobic exercise are comparable to that of Rg3. These results demonstrate that Rg3 mimics improved cardiac adaptations to exercise by regulating mitochondria dynamic remodeling and enhancing the quantity and quality of mitochondria.


A novel DFNA36 mutation in TMC1 orthologous to the Beethoven (Bth) mouse associated with autosomal dominant hearing loss in a Chinese family.

  • Yali Zhao‎ et al.
  • PloS one‎
  • 2014‎

Mutations in the transmembrane channel-like gene 1 (TMC1) can cause both DFNA36 and DFNB7/11 hearing loss. More than thirty DFNB7/11 mutations have been reported, but only three DFNA36 mutations were reported previously. In this study, we found a large Chinese family with 222 family members showing post-lingual, progressive sensorineural hearing loss which were consistent with DFNA36 hearing loss. Auditory brainstem response (ABR) test of the youngest patient showed a special result with nearly normal threshold but prolonged latency, decreased amplitude, and the abnormal waveform morphology. Exome sequencing of the proband found four candidate variants in known hearing loss genes. Sanger sequencing in all family members found a novel variant c.1253T>A (p.M418K) in TMC1 at DFNA36 that co-segregated with the phenotype. This mutation in TMC1 is orthologous to the mutation found in the hearing loss mouse model named Bth ten years ago. In another 51 Chinese autosomal dominant hearing loss families, we screened the segments containing the dominant mutations of TMC1 and no functional variants were found. TMC1 is expressed in the hair cells in inner ear. Given the already known roles of TMC1 in the mechanotransduction in the cochlea and its expression in inner ear, our results may provide an interesting perspective into its function in inner ear.


XBP1S, a BMP2-inducible transcription factor, accelerates endochondral bone growth by activating GEP growth factor.

  • Feng-Jin Guo‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2014‎

We previously reported that transcription factor XBP1S binds to RUNX2 and enhances chondrocyte hypertrophy through acting as a cofactor of RUNX2. Herein, we report that XBP1S is a key downstream molecule of BMP2 and is required for BMP2-mediated chondrocyte differentiation. XBP1S is up-regulated during chondrocyte differentiation and demonstrates the temporal and spatial expression pattern during skeletal development. XBP1S stimulates chondrocyte differentiation from mesenchymal stem cells in vitro and endochondral ossification ex vivo. In addition, XBP1S activates granulin-epithelin precursor (GEP), a growth factor known to stimulate chondrogenesis, and endogenous GEP is required, at least in part, for XBP1S-stimulated chondrocyte hypertrophy, mineralization and endochondral bone formation. Furthermore, XBP1S enhances GEP-stimulated chondrogenesis and endochondral bone formation. Collectively, these findings demonstrate that XBP1S, a BMP2-inducible transcription factor, positively regulates endochondral bone formation by activating GEP chondrogenic growth factor.


MiR-99a antitumor activity in human breast cancer cells through targeting of mTOR expression.

  • Yu Hu‎ et al.
  • PloS one‎
  • 2014‎

MicroRNAs (miRNAs) play an important role in human tumorigenesis as oncogenes or tumor suppressors. miR-99a has been reported as a tumor suppressor gene in various cancers in humans. However, only limited information about the function of miR-99a in human breast cancers is available. Here we investigated the expression of miR-99a in breast cancer tissue specimens and its antitumor activity in breast cancer cells. We initially identified that the expression of miR-99a was significantly reduced in four breast cancer cell lines. More importantly, we found downregulation of miR-99a in breast cancer specimens from ten different patients. We then analyzed the mechanism of miR-99a in inhibiting tumorigenesis. Cell-based assays that showed overexpression of miR-99a not only reduced breast cancer cell viability by inducing accumulation of cells at sub-G1 phase and cell apoptosis, but also inhibited tumorigenicity in vivo. As a critical miR-99a target, we have shown that the function of mammalian target of rapamycin (mTOR) was greatly inhibited by miR-99a-based Luciferase report assay; overexpression of miR-99a reduced the expression of mTOR and its downstream phosphorylated proteins (p-4E-BP1 and p-S6K1). Similar to restoring miR-99a expression, mTOR downregulation suppressed cell viability and increased cell apoptosis, whereas restoration of mTOR expression significantly reversed the inhibitory effects of miR-99a on the mTOR/p-4E-BP1/p-S6K1 signal pathway and the miR-99a antitumor activity. In clinical specimens and cell lines, mTOR was commonly overexpressed and its protein levels were statistically inversely correlated with miR-99a expression. Taken together, these results have demonstrated that miR-99a antitumor activity is achieved by targeting the mTOR/p-4E-BP1/p-S6K1 pathway in human breast cancer cells. This study suggests a potential therapeutic strategy to effectively control breast cancer development.


Exome sequencing identifies DLG1 as a novel gene for potential susceptibility to Crohn's disease in a Chinese family study.

  • Shufang Xu‎ et al.
  • PloS one‎
  • 2014‎

Genetic variants make some contributions to inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC). More than 100 susceptibility loci were identified in Western IBD studies, but susceptibility gene has not been found in Chinese IBD patients till now. Sequencing of individuals with an IBD family history is a powerful approach toward our understanding of the genetics and pathogenesis of IBD. The aim of this study, which focuses on a Han Chinese CD family, is to identify high-risk variants and potentially novel loci using whole exome sequencing technique.


miR-150 functions as a tumour suppressor in human colorectal cancer by targeting c-Myb.

  • Junlan Feng‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2014‎

Our previously published study documented a deregulation of the microRNA miR-150 in colorectal cancer. Here, we investigated further, in vitro and in vivo, the potential molecular mechanisms underlying the involvement of miR-150 in colorectal cancer, using the appropriate molecular biological methods. We report that miR-150 is a key regulator in the tumourigenesis and progression of colorectal cancer, by acting as a tumour suppressor targeting c-Myb. The current findings suggest that miR-150 may have important roles in the pathogenesis of colorectal cancer.


Dystrophin involved in the susceptibility of slow muscles to hindlimb unloading via concomitant activation of TGF-β1/Smad3 signaling and ubiquitin-proteasome degradation in mice.

  • Peng Zhang‎ et al.
  • Cell biochemistry and biophysics‎
  • 2014‎

While it is well known that the slow-twitch muscles are vulnerable to microgravity conditions, the molecular and cellular mechanisms underlying this phenomenon remain unknown. Dystrophin, which constitutes an important link between the cytoskeleton and the extracellular matrix, is hypothesized to be involved in force generation and mechanical stabilization of the skeletal muscle. Here we have shown that after a 14-day hindlimb unloading (HU) of the C57BL/10 mice, the expression of dystrophin was significantly down-regulated in the fast-twitch myofibers, while in the slow-twitch myofibers, it was up-regulated. In order to investigate the role of dystrophin in HU-induced susceptibility to muscle atrophy, we compared the degradation signaling mechanisms of slow-twitch soleus muscle in dystrophin-deficient (mdx) and the wild-type (WT) mice. We found that mdx mice manifest less reduction of muscle mass and myofiber cross-sectional area than the control animals. Also, the expression of two ubiquitin ligases (MuRF1, Atrogin-1), which plays a crucial role in the ubiquitin-proteasome-mediated muscular degradation, was significantly down-regulated in soleus muscle of the hindlimb-unloaded mdx mice. In comparison, in the soleus muscle of unloaded WT mice, these ligases were significantly up-regulated. Whereas the hindlimb unloading reduced the expression of transforming growth factor β (TGF-β1)/Smad3 in mdx mice, in WT mice, the expression of this growth factor was augmented in response to unloading. Correspondingly, as a result of HU of the mdx mice, the expression of four subtypes of the myosin heavy chain and troponin I was reduced or it exhibited a delayed slow-to-fast transition. In summary, our results suggest that dystrophin exerts an intermediary and positive role in the disuse atrophy of the slow-twitch muscles. This effect is mediated through the activation of TGF-β1/Smad3 signaling and downstream ubiquitin-proteasome pathway.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: