Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Identification of ireA, 0007, 0008, and 2235 as TonB-dependent receptors in the avian pathogenic Escherichia coli strain DE205B.

  • Zhonghua Zhang‎ et al.
  • Veterinary research‎
  • 2020‎

Avian pathogenic Escherichia coli (APEC), a pathotype of extraintestinal pathogenic E. coli, causes one of the most serious infectious diseases of poultry and shares some common virulence genes with neonatal meningitis-associated E. coli. TonB-dependent receptors (TBDRs) are ubiquitous outer membrane β-barrel proteins; they play an important role in the recognition of siderophores during iron uptake. Here, in the APEC strain DE205B, we investigated the role of four putative TBDRs-ireA, 0007, 0008, and 2235-in iron uptake. Glutathione-S-transferase pulldown assays indicated that the proteins encoded by these genes directly interact with TonB. Moreover, the expression levels of all four genes were significantly upregulated under iron-depleted conditions compared with iron-rich conditions. The expression levels of several iron uptake-related genes were significantly increased in the ireA, 0007, 0008, and 2235 deletion strains, with the upregulation being the most prominent in the ireA deletion mutant. Furthermore, iron uptake by the ireA deletion strain was significantly increased compared to that by the wild-type strain. Moreover, a tonB mutant strain was constructed to study the effect of tonB deletion on the TBDRs. We found that regardless of the presence of tonB, the expression levels of the genes encoding the four TBDRs were regulated by fur. In conclusion, our findings indicated that ireA, 0007, 0008, and 2235 indeed encode TBDRs, with ireA having the most important role in iron uptake. These results should help future studies explore the mechanisms underlying the TonB-dependent iron uptake pathway.


Microencapsulated phages show prolonged stability in gastrointestinal environments and high therapeutic efficiency to treat Escherichia coli O157:H7 infection.

  • Hanjie Yin‎ et al.
  • Veterinary research‎
  • 2021‎

Escherichia coli (E. coli) O157:H7 bacterial infection causes severe disease in mammals and results in substantial economic losses worldwide. Due to the development of antibiotic resistance, bacteriophage (phage) therapy has become an alternative to control O157:H7 infection. However, the therapeutic effects of phages are frequently disappointing because of their low resistance to the gastrointestinal environment. In this study, to improve the stability of phages in the gastrointestinal tract, E. coli O157:H7 phages were microencapsulated and their in vitro stability and in vivo therapeutic efficiency were investigated. The results showed that compared to free phages, the resistance of microencapsulated phages to simulated gastric fluid and bile salts significantly increased. The microencapsulated phages were efficiently released into simulated intestinal fluid, leading to a better therapeutic effect in rats infected with E. coli O157:H7 compared to the effects of the free phages. In addition, the microencapsulated phages were more stable during storage than the free phages, showing how phage microencapsulation can play an essential role in phage therapy.


Acetate metabolic requirement of avian pathogenic Escherichia coli promotes its intracellular proliferation within macrophage.

  • Xiangkai Zhuge‎ et al.
  • Veterinary research‎
  • 2019‎

Avian pathogenic Escherichia coli (APEC) is a facultative intracellular pathogen, and intracellular persistence in macrophages is essential for APEC extraintestinal dissemination. Until now, there is still no systematic interpretation of APEC intracellular proliferation. Intracellular survival factors, especially involved in pathometabolism, need to be further revealed. Acetate plays critical roles in supporting energy homeostasis and acts as a metabolic signal in the inflammatory response of eukaryotes. In this study, we identified that APEC acs-yjcH-actP operon, encoding acetate assimilation system, presented the host-induced transcription during its proliferation in macrophages. Our result showed that this acetate assimilation system acted as a novel intracellular survival factor to promote APEC replication within macrophages. Furthermore, deletion of acs-yjcH-actP operon in APEC decreased its cytotoxic level to macrophages. qRT-PCR results showed that the production of pro-inflammatory cytokines (IL-1β, IL-6, IL-8, IL-12β, and TNF-α) and iNOS in FY26∆acs-yjcH-actP infected macrophages were obviously down-regulated compared to that in wild-type FY26 infected cells. Deletion of actP/yjcH/acs genes attenuated APEC virulence and colonization capability in avian lungs in vivo for colibacillosis infection models. And acetate assimilation system acted as a virulence factor and conferred a fitness advantage during APEC early colonization. Taken together, our research unravelled the metabolic requirement of APEC intracellular survival/replication within macrophages, and acetate metabolic requirement acted as an important strategy of APEC pathometabolism. The intracellular acetate consumption during facultative intracellular bacteria replication within macrophages promoted immunomodulatory disorders, resulting in excessively pro-inflammatory responses of host macrophages.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: