Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 96 papers

Printed peptide arrays identify prognostic TNC serumantibodies in glioblastoma patients.

  • Andreas Mock‎ et al.
  • Oncotarget‎
  • 2015‎

Liquid biopsies come of age offering unexploited potential to monitor and react to tumor evolution. We developed a cost-effective assay to non-invasively determine the immune status of glioblastoma (GBM) patients. Employing newly developed printed peptide microarrays we assessed the B-cell response against tumor-associated antigens (TAAs) in 214 patients. Firstly, sera of long-term (36+ months, LTS, n=10) and short-term (6-10 months, STS, n=14) surviving patients were screened for prognostic antibodies against 1745 13-mer peptides covering known TAAs (TNC, EGFR, GLEA2, PHF3, FABP5, MAGEA3). Next, survival associations were investigated in two retrospective independent multicenter validation sets (n=61, n=129, all IDH1-wildtype). Reliability of measurements was tested using a second array technology (spotted arrays). LTS/STS screening analyses identified 106 differential antibody responses. Evaluating the Top30 peptides in validation set 1 revealed three prognostic peptides. Prediction of TNC peptide VCEDGFTGPDCAE was confirmed in a second set (p=0.043, HR=0.66 [0.44-0.99]) and was unrelated to TNC protein expression. Median signals of printed arrays correlated with pre-synthesized spotted microarrays (p<0.0002, R=0.33). Multiple survival analysis revealed independence of age, gender, KPI and MGMT status. We present a novel peptide microarray immune assay that identified increased anti-TNC VCEDGFTGPDCAE serum antibody titer as a promising non-invasive biomarker for prolonged survival.


DNA methylation-based classification of central nervous system tumours.

  • David Capper‎ et al.
  • Nature‎
  • 2018‎

Accurate pathological diagnosis is crucial for optimal management of patients with cancer. For the approximately 100 known tumour types of the central nervous system, standardization of the diagnostic process has been shown to be particularly challenging-with substantial inter-observer variability in the histopathological diagnosis of many tumour types. Here we present a comprehensive approach for the DNA methylation-based classification of central nervous system tumours across all entities and age groups, and demonstrate its application in a routine diagnostic setting. We show that the availability of this method may have a substantial impact on diagnostic precision compared to standard methods, resulting in a change of diagnosis in up to 12% of prospective cases. For broader accessibility, we have designed a free online classifier tool, the use of which does not require any additional onsite data processing. Our results provide a blueprint for the generation of machine-learning-based tumour classifiers across other cancer entities, with the potential to fundamentally transform tumour pathology.


Promotion of glioblastoma cell motility by enhancer of zeste homolog 2 (EZH2) is mediated by AXL receptor kinase.

  • Martina Ott‎ et al.
  • PloS one‎
  • 2012‎

Enhancer of zeste homolog 2 (EZH2) is the catalytic subunit of the Polycomb-repressive complex 2 (PRC2) that epigenetically silences gene transcription through histone H3 lysine trimethylation (H3K27me3). EZH2 has been implicated in stem cell maintenance and is overexpressed in hematological and solid malignancie`s including malignant glioma. EZH2 is thought to promote tumor progression by silencing tumor suppressor genes. Hence pharmacological disruption of the PRC2 is an attractive therapeutic strategy for cancer treatment. Here we show that EZH2 is expressed in human glioma and correlates with malignancy. Silencing of EZH2 reduced glioma cell proliferation and invasiveness. While we did not observe induction of cell cycle-associated tumor suppressor genes by silencing or pharmacological inhibition of EZH2, microarray analyses demonstrated a strong transcriptional reduction of the AXL receptor kinase. Neither histone nor DNA methylation appeared to be involved in the positive regulation of AXL by EZH2. Silencing AXL mimicked the antiinvasive effects of EZH2 knockdown. Finally, AXL expression is found in human gliomas with high EZH2 expression. Collectively these data suggest that EZH2 drives glioma invasiveness via transcriptional control of AXL independent of histone or DNA methylation.


Therapeutic radiation for childhood cancer drives structural aberrations of NF2 in meningiomas.

  • Sameer Agnihotri‎ et al.
  • Nature communications‎
  • 2017‎

Cranial radiotherapy improves survival of the most common childhood cancers, including brain tumors and leukemia. Unfortunately, long-term survivors are faced with consequences of secondary neoplasia, including radiation-induced meningiomas (RIMs). We characterized 31 RIMs with exome/NF2 intronic sequencing, RNA sequencing and methylation profiling, and found NF2 gene rearrangements in 12/31 of RIMs, an observation previously unreported in sporadic meningioma (SM). Additionally, known recurrent mutations characteristic of SM, including AKT1, KLF4, TRAF7 and SMO, were not observed in RIMs. Combined losses of chromosomes 1p and 22q were common in RIMs (16/18 cases) and overall, chromosomal aberrations were more complex than that observed in SM. Patterns of DNA methylation profiling supported similar cell of origin between RIMs and SMs. The findings indicate that the mutational landscape of RIMs is distinct from SMs, and have significant therapeutic implications for survivors of childhood cranial radiation and the elucidation of the molecular pathogenesis of meningiomas.Radiation-induced meningiomas are often more aggressive than sporadic ones. In this study, the authors perform an exome, methylation and RNA-seq analysis of 31 cases of radiation-induced meningioma and show NF2 rearrangement, an observation previously unreported in the sporadic tumors.


Effects of soluble CPE on glioma cell migration are associated with mTOR activation and enhanced glucose flux.

  • Elena I Ilina‎ et al.
  • Oncotarget‎
  • 2017‎

Carboxypeptidase E (CPE) has recently been described as a multifunctional protein that regulates proliferation, migration and survival in several tumor entities. In glioblastoma (GBM), the most malignant primary brain tumor, secreted CPE (sCPE) was shown to modulate tumor cell migration. In our current study, we aimed at clarifying the underlying molecular mechanisms regulating anti-migratory as well as novel metabolic effects of sCPE in GBM. Here we show that sCPE activates mTORC1 signaling in glioma cells detectable by phosphorylation of its downstream target RPS6. Additionally, sCPE diminishes glioma cell migration associated with a negative regulation of Rac1 signaling via RPS6, since both inhibition of mTOR and stimulation of Rac1 results in a reversed effect of sCPE on migration. Knockdown of CPE leads to a decrease of active RPS6 associated with increased GBM cell motility. Apart from this, we show that sCPE enhances glucose flux into the tricarboxylic acid cycle at the expense of lactate production, thereby decreasing aerobic glycolysis, which might as well contribute to a less invasive behavior of tumor cells. Our data contributes to a better understanding of the complexity of GBM cell migration and sheds new light on how tumor cell invasion and metabolic plasticity are interconnected.


The indoleamine-2,3-dioxygenase (IDO) inhibitor 1-methyl-D-tryptophan upregulates IDO1 in human cancer cells.

  • Christiane A Opitz‎ et al.
  • PloS one‎
  • 2011‎

1-methyl-D-tryptophan (1-D-MT) is currently being used in clinical trials in patients with relapsed or refractory solid tumors with the aim of inhibiting indoleamine-2,3-dioxygenase (IDO)-mediated tumor immune escape. IDO is expressed in tumors and tumor-draining lymph nodes and degrades tryptophan (trp) to create an immunsuppressive micromilieu both by depleting trp and by accumulating immunosuppressive metabolites of the kynurenine (kyn) pathway. Here we show that proliferation of alloreactive T-cells cocultured with IDO1-positive human cancer cells paradoxically was inhibited by 1-D-MT. Surprisingly incubation with 1-D-MT increased kyn production of human cancer cells. Cell-free assays revealed that 1-D-MT did not alter IDO1 enzymatic activity. Instead, 1-D-MT induced IDO1 mRNA and protein expression through pathways involving p38 MAPK and JNK signalling. Treatment of cancer patients with 1-D-MT has transcriptional effects that may promote rather than suppress anti-tumor immune escape by increasing IDO1 in the cancer cells. These off-target effects should be carefully analyzed in the ongoing clinical trials with 1-D-MT.


Establishment and application of a novel patient-derived KIAA1549:BRAF-driven pediatric pilocytic astrocytoma model for preclinical drug testing.

  • Florian Selt‎ et al.
  • Oncotarget‎
  • 2017‎

Pilocytic astrocytoma (PA) is the most frequent pediatric brain tumor. Activation of the MAPK pathway is well established as the oncogenic driver of the disease. It is most frequently caused by KIAA1549:BRAF fusions, and leads to oncogene induced senescence (OIS). OIS is thought to be a major reason for growth arrest of PA cells in vitro and in vivo, preventing establishment of PA cultures. Hence, valid preclinical models are currently very limited, but preclinical testing of new compounds is urgently needed. We transduced the PA short-term culture DKFZ-BT66 derived from the PA of a 2-year old patient with a doxycycline-inducible system coding for Simian Vacuolating Virus 40 Large T Antigen (SV40-TAg). SV40-TAg inhibits TP53/CDKN1A and CDKN2A/RB1, two pathways critical for OIS induction and maintenance. DNA methylation array and KIAA1549:BRAF fusion analysis confirmed pilocytic astrocytoma identity of DKFZ-BT66 cells after establishment. Readouts were analyzed in proliferating as well as senescent states, including cell counts, viability, cell cycle analysis, expression of SV40-Tag, CDKN2A (p16), CDKN1A (p21), and TP53 (p53) protein, and gene-expression profiling. Selected MAPK inhibitors (MAPKi) including clinically available MEK inhibitors (MEKi) were tested in vitro. Expression of SV40-TAg enabled the cells to bypass OIS and to resume proliferation with a mean doubling time of 45h allowing for propagation and long-term culture. Withdrawal of doxycycline led to an immediate decrease of SV40-TAg expression, appearance of senescent morphology, upregulation of CDKI proteins and a subsequent G1 growth arrest in line with the re-induction of senescence. DKFZ-BT66 cells still underwent replicative senescence that was overcome by TERT expression. Testing of a set of MAPKi revealed differential responses in DKFZ-BT66. MEKi efficiently inhibited MAPK signaling at clinically achievable concentrations, while BRAF V600E- and RAF Type II inhibitors showed paradoxical activation. Taken together, we have established the first patient-derived long term expandable PA cell line expressing the KIAA1549:BRAF-fusion suitable for preclinical drug testing.


Response to trametinib treatment in progressive pediatric low-grade glioma patients.

  • Florian Selt‎ et al.
  • Journal of neuro-oncology‎
  • 2020‎

A hallmark of pediatric low-grade glioma (pLGG) is aberrant signaling of the mitogen activated protein kinase (MAPK) pathway. Hence, inhibition of MAPK signaling using small molecule inhibitors such as MEK inhibitors (MEKi) may be a promising strategy.


MYCN amplification drives an aggressive form of spinal ependymoma.

  • David R Ghasemi‎ et al.
  • Acta neuropathologica‎
  • 2019‎

Spinal ependymal tumors form a histologically and molecularly heterogeneous group of tumors with generally good prognosis. However, their treatment can be challenging if infiltration of the spinal cord or dissemination throughout the central nervous system (CNS) occurs and, in these cases, clinical outcome remains poor. Here, we describe a new and relatively rare subgroup of spinal ependymal tumors identified using DNA methylation profiling that is distinct from other molecular subgroups of ependymoma. Copy number variation plots derived from DNA methylation arrays showed MYCN amplification as a characteristic genetic alteration in all cases of our cohort (n = 13), which was subsequently validated using fluorescence in situ hybridization. The histological diagnosis was anaplastic ependymoma (WHO Grade III) in ten cases and classic ependymoma (WHO Grade II) in three cases. Histological re-evaluation in five primary tumors and seven relapses showed characteristic histological features of ependymoma, namely pseudorosettes, GFAP- and EMA positivity. Electron microscopy revealed cilia, complex intercellular junctions and intermediate filaments in a representative sample. Taking these findings into account, we suggest to designate this molecular subgroup spinal ependymoma with MYCN amplification, SP-EPN-MYCN. SP-EPN-MYCN tumors showed distinct growth patterns with intradural, extramedullary localization mostly within the thoracic and cervical spine, diffuse leptomeningeal spread throughout the whole CNS and infiltrative invasion of the spinal cord. Dissemination was observed in 100% of cases. Despite high-intensity treatment, SP-EPN-MYCN showed significantly worse median progression free survival (PFS) (17 months) and median overall survival (OS) (87 months) than all other previously described molecular spinal ependymoma subgroups. OS and PFS were similar to supratentorial ependymoma with RELA-fusion (ST-EPN-RELA) and posterior fossa ependymoma A (PF-EPN-A), further highlighting the aggressiveness of this distinct new subgroup. We, therefore, propose to establish SP-EPN-MYCN as a new molecular subgroup in ependymoma and advocate for testing newly diagnosed spinal ependymal tumors for MYCN amplification.


Identification of low and very high-risk patients with non-WNT/non-SHH medulloblastoma by improved clinico-molecular stratification of the HIT2000 and I-HIT-MED cohorts.

  • Martin Mynarek‎ et al.
  • Acta neuropathologica‎
  • 2023‎

Molecular groups of medulloblastoma (MB) are well established. Novel risk stratification parameters include Group 3/4 (non-WNT/non-SHH) methylation subgroups I-VIII or whole-chromosomal aberration (WCA) phenotypes. This study investigates the integration of clinical and molecular parameters to improve risk stratification of non-WNT/non-SHH MB. Non-WNT/non-SHH MB from the HIT2000 study and the HIT-MED registries were selected based on availability of DNA-methylation profiling data. MYC or MYCN amplification and WCA of chromosomes 7, 8, and 11 were inferred from methylation array-based copy number profiles. In total, 403 non-WNT/non-SHH MB were identified, 346/403 (86%) had a methylation class family Group 3/4 methylation score (classifier v11b6) ≥ 0.9, and 294/346 (73%) were included in the risk stratification modeling based on Group 3 or 4 score (v11b6) ≥ 0.8 and subgroup I-VIII score (mb_g34) ≥ 0.8. Group 3 MB (5y-PFS, survival estimation ± standard deviation: 41.4 ± 4.6%; 5y-OS: 48.8 ± 5.0%) showed poorer survival compared to Group 4 (5y-PFS: 68.2 ± 3.7%; 5y-OS: 84.8 ± 2.8%). Subgroups II (5y-PFS: 27.6 ± 8.2%) and III (5y-PFS: 37.5 ± 7.9%) showed the poorest and subgroup VI (5y-PFS: 76.6 ± 7.9%), VII (5y-PFS: 75.9 ± 7.2%), and VIII (5y-PFS: 66.6 ± 5.8%) the best survival. Multivariate analysis revealed subgroup in combination with WCA phenotype to best predict risk of progression and death. The integration of clinical (age, M and R status) and molecular (MYC/N, subgroup, WCA phenotype) variables identified a low-risk stratum with a 5y-PFS of 94 ± 5.7 and a very high-risk stratum with a 5y-PFS of 29 ± 6.1%. Validation in an international MB cohort confirmed the combined stratification scheme with 82.1 ± 6.0% 5y-PFS in the low and 47.5 ± 4.1% in very high-risk groups, and outperformed the clinical model. These newly identified clinico-molecular low-risk and very high-risk strata, accounting for 6%, and 21% of non-WNT/non-SHH MB patients, respectively, may improve future treatment stratification.


Sarcoma classification by DNA methylation profiling.

  • Christian Koelsche‎ et al.
  • Nature communications‎
  • 2021‎

Sarcomas are malignant soft tissue and bone tumours affecting adults, adolescents and children. They represent a morphologically heterogeneous class of tumours and some entities lack defining histopathological features. Therefore, the diagnosis of sarcomas is burdened with a high inter-observer variability and misclassification rate. Here, we demonstrate classification of soft tissue and bone tumours using a machine learning classifier algorithm based on array-generated DNA methylation data. This sarcoma classifier is trained using a dataset of 1077 methylation profiles from comprehensively pre-characterized cases comprising 62 tumour methylation classes constituting a broad range of soft tissue and bone sarcoma subtypes across the entire age spectrum. The performance is validated in a cohort of 428 sarcomatous tumours, of which 322 cases were classified by the sarcoma classifier. Our results demonstrate the potential of the DNA methylation-based sarcoma classification for research and future diagnostic applications.


YAP1 subgroup supratentorial ependymoma requires TEAD and nuclear factor I-mediated transcriptional programmes for tumorigenesis.

  • Kristian W Pajtler‎ et al.
  • Nature communications‎
  • 2019‎

YAP1 fusion-positive supratentorial ependymomas predominantly occur in infants, but the molecular mechanisms of oncogenesis are unknown. Here we show YAP1-MAMLD1 fusions are sufficient to drive malignant transformation in mice, and the resulting tumors share histo-molecular characteristics of human ependymomas. Nuclear localization of YAP1-MAMLD1 protein is mediated by MAMLD1 and independent of YAP1-Ser127 phosphorylation. Chromatin immunoprecipitation-sequencing analyses of human YAP1-MAMLD1-positive ependymoma reveal enrichment of NFI and TEAD transcription factor binding site motifs in YAP1-bound regulatory elements, suggesting a role for these transcription factors in YAP1-MAMLD1-driven tumorigenesis. Mutation of the TEAD binding site in the YAP1 fusion or repression of NFI targets prevents tumor induction in mice. Together, these results demonstrate that the YAP1-MAMLD1 fusion functions as an oncogenic driver of ependymoma through recruitment of TEADs and NFIs, indicating a rationale for preclinical studies to block the interaction between YAP1 fusions and NFI and TEAD transcription factors.


Tumor cell plasticity, heterogeneity, and resistance in crucial microenvironmental niches in glioma.

  • Erik Jung‎ et al.
  • Nature communications‎
  • 2021‎

Both the perivascular niche (PVN) and the integration into multicellular networks by tumor microtubes (TMs) have been associated with progression and resistance to therapies in glioblastoma, but their specific contribution remained unknown. By long-term tracking of tumor cell fate and dynamics in the live mouse brain, differential therapeutic responses in both niches are determined. Both the PVN, a preferential location of long-term quiescent glioma cells, and network integration facilitate resistance against cytotoxic effects of radiotherapy and chemotherapy-independently of each other, but with additive effects. Perivascular glioblastoma cells are particularly able to actively repair damage to tumor regions. Population of the PVN and resistance in it depend on proficient NOTCH1 expression. In turn, NOTCH1 downregulation induces resistant multicellular networks by TM extension. Our findings identify NOTCH1 as a central switch between the PVN and network niche in glioma, and demonstrate robust cross-compensation when only one niche is targeted.


Clear cell meningiomas are defined by a highly distinct DNA methylation profile and mutations in SMARCE1.

  • Philipp Sievers‎ et al.
  • Acta neuropathologica‎
  • 2021‎

Clear cell meningioma represents an uncommon variant of meningioma that typically affects children and young adults. Although an enrichment of loss-of-function mutations in the SMARCE1 gene has been reported for this subtype, comprehensive molecular investigations are lacking. Here we describe a molecularly distinct subset of tumors (n = 31), initially identified through genome-wide DNA methylation screening among a cohort of 3093 meningiomas, of which most were diagnosed histologically as clear cell meningioma. This cohort was further supplemented by an additional 11 histologically diagnosed clear cell meningiomas for analysis (n = 42). Targeted DNA sequencing revealed SMARCE1 mutations in 33/34 analyzed samples, accompanied by a nuclear loss of expression determined via immunohistochemistry and a decreased SMARCE1 transcript expression in the tumor cells. Analysis of time to progression or recurrence of patients within the clear cell meningioma group (n = 14) in comparison to those with meningioma WHO grade 2 (n = 220) revealed a similar outcome and support the assignment of WHO grade 2 to these tumors. Our findings indicate the existence of a highly distinct epigenetic signature of clear cell meningiomas, separate from all other variants of meningiomas, with recurrent mutations in the SMARCE1 gene. This suggests that these tumors may arise from a different precursor cell population than the broad spectrum of the other meningioma subtypes.


Glioblastoma hijacks neuronal mechanisms for brain invasion.

  • Varun Venkataramani‎ et al.
  • Cell‎
  • 2022‎

Glioblastomas are incurable tumors infiltrating the brain. A subpopulation of glioblastoma cells forms a functional and therapy-resistant tumor cell network interconnected by tumor microtubes (TMs). Other subpopulations appear unconnected, and their biological role remains unclear. Here, we demonstrate that whole-brain colonization is fueled by glioblastoma cells that lack connections with other tumor cells and astrocytes yet receive synaptic input from neurons. This subpopulation corresponds to neuronal and neural-progenitor-like tumor cell states, as defined by single-cell transcriptomics, both in mouse models and in the human disease. Tumor cell invasion resembled neuronal migration mechanisms and adopted a Lévy-like movement pattern of probing the environment. Neuronal activity induced complex calcium signals in glioblastoma cells followed by the de novo formation of TMs and increased invasion speed. Collectively, superimposing molecular and functional single-cell data revealed that neuronal mechanisms govern glioblastoma cell invasion on multiple levels. This explains how glioblastoma's dissemination and cellular heterogeneity are closely interlinked.


DEGRO practical guideline for central nervous system radiation necrosis part 1: classification and a multistep approach for diagnosis.

  • Denise Bernhardt‎ et al.
  • Strahlentherapie und Onkologie : Organ der Deutschen Rontgengesellschaft ... [et al]‎
  • 2022‎

The Working Group for Neuro-Oncology of the German Society for Radiation Oncology in cooperation with members of the Neuro-Oncology Working Group of the German Cancer Society aimed to define a practical guideline for the diagnosis and treatment of radiation-induced necrosis (RN) of the central nervous system (CNS).


Radiation-induced gliomas represent H3-/IDH-wild type pediatric gliomas with recurrent PDGFRA amplification and loss of CDKN2A/B.

  • Maximilian Y Deng‎ et al.
  • Nature communications‎
  • 2021‎

Long-term complications such as radiation-induced second malignancies occur in a subset of patients following radiation-therapy, particularly relevant in pediatric patients due to the long follow-up period in case of survival. Radiation-induced gliomas (RIGs) have been reported in patients after treatment with cranial irradiation for various primary malignancies such as acute lymphoblastic leukemia (ALL) and medulloblastoma (MB). We perform comprehensive (epi-) genetic and expression profiling of RIGs arising after cranial irradiation for MB (n = 23) and ALL (n = 9). Our study reveals a unifying molecular signature for the majority of RIGs, with recurrent PDGFRA amplification and loss of CDKN2A/B and an absence of somatic hotspot mutations in genes encoding histone 3 variants or IDH1/2, uncovering diagnostic markers and potentially actionable targets.


Recurrent fusions in PLAGL1 define a distinct subset of pediatric-type supratentorial neuroepithelial tumors.

  • Philipp Sievers‎ et al.
  • Acta neuropathologica‎
  • 2021‎

Ependymomas encompass a heterogeneous group of central nervous system (CNS) neoplasms that occur along the entire neuroaxis. In recent years, extensive (epi-)genomic profiling efforts have identified several molecular groups of ependymoma that are characterized by distinct molecular alterations and/or patterns. Based on unsupervised visualization of a large cohort of genome-wide DNA methylation data, we identified a highly distinct group of pediatric-type tumors (n = 40) forming a cluster separate from all established CNS tumor types, of which a high proportion were histopathologically diagnosed as ependymoma. RNA sequencing revealed recurrent fusions involving the pleomorphic adenoma gene-like 1 (PLAGL1) gene in 19 of 20 of the samples analyzed, with the most common fusion being EWSR1:PLAGL1 (n = 13). Five tumors showed a PLAGL1:FOXO1 fusion and one a PLAGL1:EP300 fusion. High transcript levels of PLAGL1 were noted in these tumors, with concurrent overexpression of the imprinted genes H19 and IGF2, which are regulated by PLAGL1. Histopathological review of cases with sufficient material (n = 16) demonstrated a broad morphological spectrum of tumors with predominant ependymoma-like features. Immunohistochemically, tumors were GFAP positive and OLIG2- and SOX10 negative. In 3/16 of the cases, a dot-like positivity for EMA was detected. All tumors in our series were located in the supratentorial compartment. Median age of the patients at the time of diagnosis was 6.2 years. Median progression-free survival was 35 months (for 11 patients with data available). In summary, our findings suggest the existence of a novel group of supratentorial neuroepithelial tumors that are characterized by recurrent PLAGL1 fusions and enriched for pediatric patients.


PATZ1 fusions define a novel molecularly distinct neuroepithelial tumor entity with a broad histological spectrum.

  • Karam T Alhalabi‎ et al.
  • Acta neuropathologica‎
  • 2021‎

Large-scale molecular profiling studies in recent years have shown that central nervous system (CNS) tumors display a much greater heterogeneity in terms of molecularly distinct entities, cellular origins and genetic drivers than anticipated from histological assessment. DNA methylation profiling has emerged as a useful tool for robust tumor classification, providing new insights into these heterogeneous molecular classes. This is particularly true for rare CNS tumors with a broad morphological spectrum, which are not possible to assign as separate entities based on histological similarity alone. Here, we describe a molecularly distinct subset of predominantly pediatric CNS neoplasms (n = 60) that harbor PATZ1 fusions. The original histological diagnoses of these tumors covered a wide spectrum of tumor types and malignancy grades. While the single most common diagnosis was glioblastoma (GBM), clinical data of the PATZ1-fused tumors showed a better prognosis than typical GBM, despite frequent relapses. RNA sequencing revealed recurrent MN1:PATZ1 or EWSR1:PATZ1 fusions related to (often extensive) copy number variations on chromosome 22, where PATZ1 and the two fusion partners are located. These fusions have individually been reported in a number of glial/glioneuronal tumors, as well as extracranial sarcomas. We show here that they are more common than previously acknowledged, and together define a biologically distinct CNS tumor type with high expression of neural development markers such as PAX2, GATA2 and IGF2. Drug screening performed on the MN1:PATZ1 fusion-bearing KS-1 brain tumor cell line revealed preliminary candidates for further study. In summary, PATZ1 fusions define a molecular class of histologically polyphenotypic neuroepithelial tumors, which show an intermediate prognosis under current treatment regimens.


Glioblastomas with primitive neuronal component harbor a distinct methylation and copy-number profile with inactivation of TP53, PTEN, and RB1.

  • Abigail K Suwala‎ et al.
  • Acta neuropathologica‎
  • 2021‎

Glioblastoma IDH-wildtype presents with a wide histological spectrum. Some features are so distinctive that they are considered as separate histological variants or patterns for the purpose of classification. However, these usually lack defined (epi-)genetic alterations or profiles correlating with this histology. Here, we describe a molecular subtype with overlap to the unique histological pattern of glioblastoma with primitive neuronal component. Our cohort consists of 63 IDH-wildtype glioblastomas that harbor a characteristic DNA methylation profile. Median age at diagnosis was 59.5 years. Copy-number variations and genetic sequencing revealed frequent alterations in TP53, RB1 and PTEN, with fewer gains of chromosome 7 and homozygous CDKN2A/B deletions than usually described for IDH-wildtype glioblastoma. Gains of chromosome 1 were detected in more than half of the cases. A poorly differentiated phenotype with frequent absence of GFAP expression, high proliferation index and strong staining for p53 and TTF1 often caused misleading histological classification as carcinoma metastasis or primitive neuroectodermal tumor. Clinically, many patients presented with leptomeningeal dissemination and spinal metastasis. Outcome was poor with a median overall survival of only 12 months. Overall, we describe a new molecular subtype of IDH-wildtype glioblastoma with a distinct histological appearance and genetic signature.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: