Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 19 papers out of 19 papers

A novel neuroferritinopathy mouse model (FTL 498InsTC) shows progressive brain iron dysregulation, morphological signs of early neurodegeneration and motor coordination deficits.

  • Federica Maccarinelli‎ et al.
  • Neurobiology of disease‎
  • 2015‎

Neuroferritinopathy is a rare genetic disease with a dominant autosomal transmission caused by mutations of the ferritin light chain gene (FTL). It belongs to Neurodegeneration with Brain Iron Accumulation, a group of disorders where iron dysregulation is tightly associated with neurodegeneration. We studied the 498-499InsTC mutation which causes the substitution of the last 9 amino acids and an elongation of extra 16 amino acids at the C-terminus of L-ferritin peptide. An analysis with cyclic voltammetry on the purified protein showed that this structural modification severely reduces the ability of the protein to store iron. In order to analyze the impact of the mutation in vivo, we generated mouse models for the some pathogenic human FTL gene in FVB and C57BL/6J strains. Transgenic mice in the FVB background showed high accumulation of the mutated ferritin in brain where it correlated with increased iron deposition with age, as scored by magnetic resonance imaging. Notably, the accumulation of iron-ferritin bodies was accompanied by signs of oxidative damage. In the C57BL/6 background, both the expression of the mutant ferritin and the iron levels were lower than in the FVB strain. Nevertheless, also these mice showed oxidative alterations in the brain. Furthermore, post-natal hippocampal neurons obtained from these mice experienced a marked increased cell death in response to chronic iron overload and/or acute oxidative stress, in comparison to wild-type neurons. Ultrastructural analyses revealed an accumulation of lipofuscin granules associated with iron deposits, particularly enriched in the cerebellum and striatum of our transgenic mice. Finally, experimental subjects were tested throughout development and aging at 2-, 8- and 18-months for behavioral phenotype. Rotarod test revealed a progressive impaired motor coordination building up with age, FTL mutant old mice showing a shorter latency to fall from the apparatus, according to higher accumulation of iron aggregates in the striatum. Our data show that our 498-499InsTC mouse models recapitulate early pathological and clinical traits of the human neuroferritinopathy, thus providing a valuable model for the study of the disease. Finally, we propose a mechanistic model of lipofuscine formation that can account for the etiopathogenesis of human neuroferritinopathy.


A role of OCRL in clathrin-coated pit dynamics and uncoating revealed by studies of Lowe syndrome cells.

  • Ramiro Nández‎ et al.
  • eLife‎
  • 2014‎

Mutations in the inositol 5-phosphatase OCRL cause Lowe syndrome and Dent's disease. Although OCRL, a direct clathrin interactor, is recruited to late-stage clathrin-coated pits, clinical manifestations have been primarily attributed to intracellular sorting defects. Here we show that OCRL loss in Lowe syndrome patient fibroblasts impacts clathrin-mediated endocytosis and results in an endocytic defect. These cells exhibit an accumulation of clathrin-coated vesicles and an increase in U-shaped clathrin-coated pits, which may result from sequestration of coat components on uncoated vesicles. Endocytic vesicles that fail to lose their coat nucleate the majority of the numerous actin comets present in patient cells. SNX9, an adaptor that couples late-stage endocytic coated pits to actin polymerization and which we found to bind OCRL directly, remains associated with such vesicles. These results indicate that OCRL acts as an uncoating factor and that defects in clathrin-mediated endocytosis likely contribute to pathology in patients with OCRL mutations.


Iron supplementation enhances RSL3-induced ferroptosis to treat naïve and prevent castration-resistant prostate cancer.

  • Federica Maccarinelli‎ et al.
  • Cell death discovery‎
  • 2023‎

Prostate cancer (PCa) is a leading cause of death in the male population commonly treated with androgen deprivation therapy that often relapses as androgen-independent and aggressive castration-resistant prostate cancer (CRPC). Ferroptosis is a recently described form of cell death that requires abundant cytosolic labile iron to promote membrane lipid peroxidation and which can be induced by agents that inhibit the glutathione peroxidase-4 activity such as RSL3. Exploiting in vitro and in vivo human and murine PCa models and the multistage transgenic TRAMP model of PCa we show that RSL3 induces ferroptosis in PCa cells and demonstrate for the first time that iron supplementation significantly increases the effect of RSL3 triggering lipid peroxidation, enhanced intracellular stress and leading to cancer cell death. Moreover, the combination with the second generation anti-androgen drug enzalutamide potentiates the effect of the RSL3 + iron combination leading to superior inhibition of PCa and preventing the onset of CRPC in the TRAMP mouse model. These data open new perspectives in the use of pro-ferroptotic approaches alone or in combination with enzalutamide for the treatment of PCa.


Analysis of nucleotide variations in genes of iron management in patients of Parkinson's disease and other movement disorders.

  • Emanuela Castiglioni‎ et al.
  • Parkinson's disease‎
  • 2010‎

The capacity to act as an electron donor and acceptor makes iron an essential cofactor of many vital processes. Its balance in the body has to be tightly regulated since its excess can be harmful by favouring oxidative damage, while its deficiency can impair fundamental activities like erythropoiesis. In the brain, an accumulation of iron or an increase in its availability has been associated with the development and/or progression of different degenerative processes, including Parkinson's disease, while iron paucity seems to be associated with cognitive deficits, motor dysfunction, and restless legs syndrome. In the search of DNA sequence variations affecting the individual predisposition to develop movement disorders, we scanned by DHPLC the exons and intronic boundary regions of ceruloplasmin, iron regulatory protein 2, hemopexin, hepcidin and hemojuvelin genes in cohorts of subjects affected by Parkinson's disease and idiopathic neurodegeneration with brain iron accumulation (NBIA). Both novel and known sequence variations were identified in most of the genes, but none of them seemed to be significantly associated to the movement diseases of interest.


Improvement and extension of anti-EGFR targeting in breast cancer therapy by integration with the Avidin-Nucleic-Acid-Nano-Assemblies.

  • Francesco Roncato‎ et al.
  • Nature communications‎
  • 2018‎

Nowadays, personalized cancer therapy relies on small molecules, monoclonal antibodies, or antibody-drug conjugates (ADC). Many nanoparticle (NP)-based drug delivery systems are also actively investigated, but their advantage over ADCs has not been demonstrated yet. Here, using the Avidin-Nucleic-Acid-Nano-Assemblies (ANANAS), a class of polyavidins multifuctionalizable with stoichiometric control, we compare quantitatively anti-EGFR antibody(cetuximab)-targeted NPs to the corresponding ADC. We show that ANANAS tethering of cetuximab promotes a more efficient EGFR-dependent vesicle-mediated internalization. Cetuximab-guided ANANAS carrying doxorubicin are more cytotoxic in vitro and much more potent in vivo than the corresponding ADC, leading to 43% tumor reduction at low drug dosage (0.56 mg/kg). Advantage of cetuximab-guided ANANAS with respect to the ADC goes beyond the increase in drug-to-antibody ratio. Even if further studies are needed, we propose that NP tethering could expand application of the anti-EGFR antibody to a wider number of cancer patients including the KRAS-mutated ones, currently suffering from poor prognosis.


Epsin deficiency impairs endocytosis by stalling the actin-dependent invagination of endocytic clathrin-coated pits.

  • Mirko Messa‎ et al.
  • eLife‎
  • 2014‎

Epsin is an evolutionarily conserved endocytic clathrin adaptor whose most critical function(s) in clathrin coat dynamics remain(s) elusive. To elucidate such function(s), we generated embryonic fibroblasts from conditional epsin triple KO mice. Triple KO cells displayed a dramatic cell division defect. Additionally, a robust impairment in clathrin-mediated endocytosis was observed, with an accumulation of early and U-shaped pits. This defect correlated with a perturbation of the coupling between the clathrin coat and the actin cytoskeleton, which we confirmed in a cell-free assay of endocytosis. Our results indicate that a key evolutionary conserved function of epsin, in addition to other roles that include, as we show here, a low affinity interaction with SNAREs, is to help generate the force that leads to invagination and then fission of clathrin-coated pits.


Behavioral characterization of mouse models of neuroferritinopathy.

  • Sara Capoccia‎ et al.
  • PloS one‎
  • 2015‎

Ferritin is the main intracellular protein of iron storage with a central role in the regulation of iron metabolism and detoxification. Nucleotide insertions in the last exon of the ferritin light chain cause a neurodegenerative disease known as Neuroferritinopathy, characterized by iron deposition in the brain, particularly in the cerebellum, basal ganglia and motor cortex. The disease progresses relentlessly, leading to dystonia, chorea, motor disability and neuropsychiatry features. The characterization of a good animal model is required to compare and contrast specific features with the human disease, in order to gain new insights on the consequences of chronic iron overload on brain function and behavior. To this aim we studied an animal model expressing the pathogenic human FTL mutant 498InsTC under the phosphoglycerate kinase (PGK) promoter. Transgenic (Tg) mice showed strong accumulation of the mutated protein in the brain, which increased with age, and this was accompanied by brain accumulation of ferritin/iron bodies, the main pathologic hallmark of human neuroferritinopathy. Tg-mice were tested throughout development and aging at 2-, 8- and 18-months for motor coordination and balance (Beam Walking and Footprint tests). The Tg-mice showed a significant decrease in motor coordination at 8 and 18 months of age, with a shorter latency to fall and abnormal gait. Furthermore, one group of aged naïve subjects was challenged with two herbicides (Paraquat and Maneb) known to cause oxidative damage. The treatment led to a paradoxical increase in behavioral activation in the transgenic mice, suggestive of altered functioning of the dopaminergic system. Overall, data indicate that mice carrying the pathogenic FTL498InsTC mutation show motor deficits with a developmental profile suggestive of a progressive pathology, as in the human disease. These mice could be a powerful tool to study the neurodegenerative mechanisms leading to the disease and help developing specific therapeutic targets.


Endogenous Long Pentraxin 3 Exerts a Protective Role in a Murine Model of Pulmonary Fibrosis.

  • Federica Maccarinelli‎ et al.
  • Frontiers in immunology‎
  • 2021‎

Pulmonary fibrosis is a progressive scarring disease of the lungs, characterized by inflammation, fibroblast activation, and deposition of extracellular matrix. The long pentraxin 3 (PTX3) is a member of the pentraxin family with non-redundant functions in innate immune responses, tissue repair, and haemostasis. The role played in the lungs by PTX3 during the fibrotic process has not been elucidated. In this study, the impact of PTX3 expression on lung fibrosis was assessed in an intratracheal bleomycin (BLM)-induced murine model of the disease applied to wild type animals, transgenic mice characterized by endothelial overexpression and stromal accumulation of PTX3 (Tie2-PTX3 mice), and genetically deficient Ptx3-/- animals. Our data demonstrate that PTX3 is produced during BLM-induced fibrosis in wild type mice, and that PTX3 accumulation in the stroma compartment of Tie2-PTX3 mice limits the formation of fibrotic tissue in the lungs, with reduced fibroblast activation and collagen deposition, and a decrease in the recruitment of the immune infiltrate. Conversely, Ptx3-null mice showed an exacerbated fibrotic response and decreased survival in response to BLM treatment. These results underline the protective role of endogenous PTX3 during lung fibrosis and pave the way for the study of novel PTX3-derived therapeutic approaches to the disease.


H-ferritin suppression and pronounced mitochondrial respiration make Hepatocellular Carcinoma cells sensitive to RSL3-induced ferroptosis.

  • Michela Asperti‎ et al.
  • Free radical biology & medicine‎
  • 2021‎

Ferroptosis is a form of regulated cell death dependent on iron, reactive oxygen species and characterized by the accumulation of lipid peroxides. It can be experimentally initiated by chemicals, such as erastin and RSL3, that modulate GPX4 activity, the cellular antioxidant machinery that avert lipid peroxidation. The study aimed to investigate mitochondrial respiration and ferritin function as biomarkers of ferroptosis sensitivity of HepG2 and HA22T/VGH, two Hepatocellular Carcinoma (HCC) cell line models. Cell viability was determined by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) assay, labile iron levels were determined using Calcein-AM fluorescence microscopy, ferritin, glutathione and lipid peroxidation were assayed with commercially available kits. The Seahorse assay was used to investigate mitochondrial function in the cells. The study shows that highly differentiated HepG2 cells were more sensitive to RSL3-induced ferroptosis than the poorly differentiated HA22T/VGH (HCC) cell line (RSL3 IC50 0.07 μM in HepG2 vs 0.3 μM in HA22T/VGH). Interestingly, HepG2 exhibited higher mitochondrial respiration and lower glycolytic activity than HA22T/VGH and were more sensitive to RSL3-induced ferroptosis, indicating a mitochondrial-specific mechanism of action of RSL3. Interestingly, iron metabolism seems to be involved in this different sensitivity, specifically, the downregulation of H-ferritin (but not of L-subunit), makes HA22T/VGH more sensitive toward both RSL3-and iron-induced ferroptosis. Hence only the H-ferritin seems involved in the protection from this cell death process.


Long Pentraxin 3-Mediated Fibroblast Growth Factor Trapping Impairs Fibrosarcoma Growth.

  • Priscila Fabiana Rodrigues‎ et al.
  • Frontiers in oncology‎
  • 2018‎

Fibrosarcomas are soft tissue mesenchymal tumors originating from transformed fibroblasts. Fibroblast growth factor-2 (FGF2) and its tyrosine-kinase receptors (FGFRs) play pivotal roles in fibrosarcoma onset and progression, FGF2 being actively produced by fibroblasts in all stages along their malignant transformation to the fibrosarcoma stage. The soluble pattern recognition receptor long pentraxin-3 (PTX3) is an extrinsic oncosuppressor whose expression is reduced in different tumor types, including soft tissue sarcomas, via hypermethylation of its gene promoter. PTX3 interacts with FGF2 and other FGF family members, thus acting as a multi-FGF antagonist able to inhibit FGF-dependent neovascularization and tumor growth. Here, PTX3 overexpression significantly reduced the proliferative and tumorigenic potential of fibrosarcoma cells in vitro and in vivo. In addition, systemic delivery of human PTX3 driven by the Tie2 promoter inhibited the growth of fibrosarcoma grafts in transgenic mice. In a translational perspective, the PTX3-derived small molecule FGF trap NSC12 prevented activation of the FGF/FGFR system in fibrosarcoma cells and reduced their tumorigenic activity in vivo. In conclusion, impairment of the FGF/FGFR system by FGF trap molecules may represent a novel therapeutic approach for the treatment of fibrosarcoma.


The Autocrine FGF/FGFR System in both Skin and Uveal Melanoma: FGF Trapping as a Possible Therapeutic Approach.

  • Sara Rezzola‎ et al.
  • Cancers‎
  • 2019‎

Fibroblast growth factors (FGFs) play non-redundant autocrine/paracrine functions in various human cancers. The Cancer Genome Atlas (TCGA) data mining indicates that high levels of FGF and/or FGF receptor (FGFR) expression are associated with reduced overall survival, chromosome 3 monosomy and BAP1 mutation in human uveal melanoma (UM), pointing to the FGF/FGFR system as a target for UM treatment. Here, we investigated the impact of different FGF trapping approaches on the tumorigenic and liver metastatic activity of liver metastasis-derived murine melanoma B16-LS9 cells that, similar to human UM, are characterized by a distinctive hepatic tropism. In vitro and in vivo experiments demonstrated that the overexpression of the natural FGF trap inhibitor long-pentraxin 3 (PTX3) inhibits the oncogenic activity of B16-LS9 cells. In addition, B16-LS9 cells showed a reduced tumor growth and liver metastatic activity when grafted in PTX3-overexpressing transgenic mice. The efficacy of the FGF trapping approach was confirmed by the capacity of the PTX3-derived pan-FGF trap small molecule NSC12 to inhibit B16-LS9 cell growth in vitro, in a zebrafish embryo orthotopic tumor model and in an experimental model of liver metastasis. Possible translational implications for these observations were provided by the capacity of NSC12 to inhibit FGF signaling and cell proliferation in human UM Mel285, Mel270, 92.1, and OMM2.3 cells. In addition, NSC12 caused caspase-3 activation and PARP cleavage followed by apoptotic cell death as well as -catenin degradation and inhibition of UM cell migration. Together, our findings indicate that FGF trapping may represent a novel therapeutic strategy in UM.


Long Pentraxin-3 Follows and Modulates Bladder Cancer Progression.

  • Sara Matarazzo‎ et al.
  • Cancers‎
  • 2019‎

Bladder tumors are a diffuse type of cancer. Long pentraxin-3 (PTX3) is a component of the innate immunity with pleiotropic functions in the regulation of immune response, tissue remodeling, and cancer progression. PTX3 may act as an oncosuppressor in different contexts, functioning as an antagonist of the fibroblast growth factor/fibroblast growth factor receptor (FGF/FGFR) system, rewiring the immune microenvironment, or acting through mechanisms not yet fully clarified. In this study we used biopsies and data mining to assess that PTX3 is differentially expressed during the different stages of bladder cancer (BC) progression. BC cell lines, representative of different tumor grades, and transgenic/carcinogen-induced models were used to demonstrate in vitro and in vivo that PTX3 production by tumor cells decreases along the progression from low-grade to high-grade advanced muscle invasive forms (MIBC). In vitro and in vivo data revealed for the first time that PTX3 modulation and the consequent impairment of FGF/FGR systems in BC cells have a significant impact on different biological features of BC growth, including cell proliferation, motility, metabolism, stemness, and drug resistance. PTX3 exerts an oncosuppressive effect on BC progression and may represent a potential functional biomarker in BC evolution. Moreover, FGF/FGFR blockade has an impact on drug resistance and stemness features in BC.


Epsins Regulate Mouse Embryonic Stem Cell Exit from Pluripotency and Neural Commitment by Controlling Notch Activation.

  • Marina Cardano‎ et al.
  • Stem cells international‎
  • 2019‎

Epsins are part of the internalization machinery pivotal to control clathrin-mediated endocytosis. Here, we report that epsin family members are expressed in mouse embryonic stem cells (mESCs) and that epsin1/2 knockdown alters both mESC exits from pluripotency and their differentiation. Furthermore, we show that epsin1/2 knockdown compromises the correct polarization and division of mESC-derived neural progenitors and their conversion into expandable radial glia-like neural stem cells. Finally, we provide evidence that Notch signaling is impaired following epsin1/2 knockdown and that experimental restoration of Notch signaling rescues the epsin-mediated phenotypes. We conclude that epsins contribute to control mESC exit from pluripotency and allow their neural differentiation by appropriate modulation of Notch signaling.


Mice lacking mitochondrial ferritin are more sensitive to doxorubicin-mediated cardiotoxicity.

  • Federica Maccarinelli‎ et al.
  • Journal of molecular medicine (Berlin, Germany)‎
  • 2014‎

Mitochondrial ferritin is a functional ferritin that localizes in the mitochondria. It is expressed in the testis, heart, brain, and cells with active respiratory activity. Its overexpression in cultured cells protected against oxidative damage and reduced cytosolic iron availability. However, no overt phenotype was described in mice with inactivation of the FtMt gene. Here, we used the doxorubicin model of cardiac injury in a novel strain of FtMt-null mice to investigate the antioxidant role of FtMt. These mice did not show any evident phenotype, but after acute treatment to doxorubicin, they showed enhanced mortality and altered heart morphology with fibril disorganization and severe mitochondrial damage. Signs of mitochondrial damage were present also in mock-treated FtMt(-/-) mice. The hearts of saline- and doxorubicin-treated FtMt(-/-) mice had higher thiobarbituric acid reactive substance levels, heme oxygenase 1 expression, and protein oxidation, but did not differ from FtMt(+/+) in the cardiac damage marker B-type natriuretic peptide (BNP), ATP levels, and apoptosis. However, the autophagy marker LC3 was activated. The results show that the absence of FtMt, which is highly expressed in the heart, increases the sensitivity of heart mitochondria to the toxicity of doxorubicin. This study represents the first in vivo evidence of the antioxidant role of FtMt.


The PTX3/TLR4 autocrine loop as a novel therapeutic target in triple negative breast cancer.

  • Arianna Giacomini‎ et al.
  • Experimental hematology & oncology‎
  • 2023‎

The pattern recognition receptor long pentraxin-3 (PTX3) plays conflicting roles in cancer by acting as an oncosuppressor or as a pro-tumor mediator depending on tumor context. Triple negative breast cancer (TNBC) represents the most aggressive histotype of breast cancer, characterized by the lack of efficacious therapeutic targets/approaches and poor prognosis. Thus, the characterization of new molecular pathways and/or alternative druggable targets is of great interest in TNBC.


Targeting the ERK Signaling Pathway in Melanoma.

  • Paola Savoia‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

The discovery of the role of the RAS/RAF/MEK/ERK pathway in melanomagenesis and its progression have opened a new era in the treatment of this tumor. Vemurafenib was the first specific kinase inhibitor approved for therapy of advanced melanomas harboring BRAF-activating mutations, followed by dabrafenib and encorafenib. However, despite the excellent results of first-generation kinase inhibitors in terms of response rate, the average duration of the response was short, due to the onset of genetic and epigenetic resistance mechanisms. The combination therapy with MEK inhibitors is an excellent strategy to circumvent drug resistance, with the additional advantage of reducing side effects due to the paradoxical reactivation of the MAPK pathway. The recent development of RAS and extracellular signal-related kinases (ERK) inhibitors promises to add new players for the ultimate suppression of this signaling pathway and the control of pathway-related drug resistance. In this review, we analyze the pharmacological, preclinical, and clinical trial data of the various MAPK pathway inhibitors, with a keen interest for their clinical applicability in the management of advanced melanoma.


Sac2/INPP5F is an inositol 4-phosphatase that functions in the endocytic pathway.

  • Fubito Nakatsu‎ et al.
  • The Journal of cell biology‎
  • 2015‎

The recruitment of inositol phosphatases to endocytic membranes mediates dephosphorylation of PI(4,5)P2, a phosphoinositide concentrated in the plasma membrane, and prevents its accumulation on endosomes. The importance of the conversion of PI(4,5)P2 to PtdIns during endocytosis is demonstrated by the presence of both a 5-phosphatase and a 4-phosphatase (Sac domain) module in the synaptojanins, endocytic PI(4,5)P2 phosphatases conserved from yeast to humans and the only PI(4,5)P2 phosphatases in yeast. OCRL, another 5-phosphatase that couples endocytosis to PI(4,5)P2 dephosphorylation, lacks a Sac domain. Here we show that Sac2/INPP5F is a PI4P phosphatase that colocalizes with OCRL on endocytic membranes, including vesicles formed by clathrin-mediated endocytosis, macropinosomes, and Rab5 endosomes. An OCRL-Sac2/INPP5F interaction could be demonstrated by coimmunoprecipitation and was potentiated by Rab5, whose activity is required to recruit Sac2/INPP5F to endosomes. Sac2/INPP5F and OCRL may cooperate in the sequential dephosphorylation of PI(4,5)P2 at the 5 and 4 position of inositol in a partnership that mimics that of the two phosphatase modules of synaptojanin.


Coordinated actions of actin and BAR proteins upstream of dynamin at endocytic clathrin-coated pits.

  • Shawn M Ferguson‎ et al.
  • Developmental cell‎
  • 2009‎

The GTPase dynamin, a key player in endocytic membrane fission, interacts with numerous proteins that regulate actin dynamics and generate/sense membrane curvature. To determine the functional relationship between these proteins and dynamin, we have analyzed endocytic intermediates that accumulate in cells that lack dynamin (derived from dynamin 1 and 2 double conditional knockout mice). In these cells, actin-nucleating proteins, actin, and BAR domain proteins accumulate at the base of arrested endocytic clathrin-coated pits, where they support the growth of dynamic long tubular necks. These results, which we show reflect the sequence of events in wild-type cells, demonstrate a concerted action of these proteins prior to, and independent of, dynamin and emphasize similarities between clathrin-mediated endocytosis in yeast and higher eukaryotes. Our data also demonstrate that the relationship between dynamin and actin is intimately connected to dynamin's endocytic role and that dynamin terminates a powerful actin- and BAR protein-dependent tubulating activity.


FGFR blockade by pemigatinib treats naïve and castration resistant prostate cancer.

  • Paola Chiodelli‎ et al.
  • Cancer letters‎
  • 2022‎

Prostate cancer (PCa) is a leading cause of cancer mortality in the male population commonly treated with androgen deprivation therapy (ADT) and relapsing as aggressive and androgen-independent castration-resistant prostate cancer (CRPC). In PCa the FGF/FGFR family of growth factors and receptors represents a relevant mediator of cancer growth, tumor-stroma interaction, and a driver of resistance and relapse to ADT. In the present work, we validate the therapeutic efficacy the FDA-approved FGFR inhibitor pemigatinib, in an integrated platform consisting of human and murine PCa cells, and the transgenic multistage TRAMP model of PCa that recapitulates both androgen-dependent and CRPC settings. Our results show for the first time that pemigatinib causes intracellular stress and cell death in PCa cells and prevents tumor growth in vivo and in the multistage model. In addition, the combination of pemigatinib with enzalutamide resulted in long-lasting tumor inhibition and prevention of CRPC relapse in TRAMP mice. These data are confirmed by the implementation of a stochastic mathematical model and in silico simulation. Pemigatinib represents a promising FDA-approved FGFR inhibitor for the treatment of PCa and CRPC alone and in combination with enzalutamide.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: