Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 25 papers

Evolution of Extensively Drug-Resistant Tuberculosis over Four Decades: Whole Genome Sequencing and Dating Analysis of Mycobacterium tuberculosis Isolates from KwaZulu-Natal.

  • Keira A Cohen‎ et al.
  • PLoS medicine‎
  • 2015‎

The continued advance of antibiotic resistance threatens the treatment and control of many infectious diseases. This is exemplified by the largest global outbreak of extensively drug-resistant (XDR) tuberculosis (TB) identified in Tugela Ferry, KwaZulu-Natal, South Africa, in 2005 that continues today. It is unclear whether the emergence of XDR-TB in KwaZulu-Natal was due to recent inadequacies in TB control in conjunction with HIV or other factors. Understanding the origins of drug resistance in this fatal outbreak of XDR will inform the control and prevention of drug-resistant TB in other settings. In this study, we used whole genome sequencing and dating analysis to determine if XDR-TB had emerged recently or had ancient antecedents.


Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement.

  • Bruce J Walker‎ et al.
  • PloS one‎
  • 2014‎

Advances in modern sequencing technologies allow us to generate sufficient data to analyze hundreds of bacterial genomes from a single machine in a single day. This potential for sequencing massive numbers of genomes calls for fully automated methods to produce high-quality assemblies and variant calls. We introduce Pilon, a fully automated, all-in-one tool for correcting draft assemblies and calling sequence variants of multiple sizes, including very large insertions and deletions. Pilon works with many types of sequence data, but is particularly strong when supplied with paired end data from two Illumina libraries with small e.g., 180 bp and large e.g., 3-5 Kb inserts. Pilon significantly improves draft genome assemblies by correcting bases, fixing mis-assemblies and filling gaps. For both haploid and diploid genomes, Pilon produces more contiguous genomes with fewer errors, enabling identification of more biologically relevant genes. Furthermore, Pilon identifies small variants with high accuracy as compared to state-of-the-art tools and is unique in its ability to accurately identify large sequence variants including duplications and resolve large insertions. Pilon is being used to improve the assemblies of thousands of new genomes and to identify variants from thousands of clinically relevant bacterial strains. Pilon is freely available as open source software.


Peptide-Like Nylon-3 Polymers with Activity against Phylogenetically Diverse, Intrinsically Drug-Resistant Pathogenic Fungi.

  • Leslie A Rank‎ et al.
  • mSphere‎
  • 2018‎

Understanding the dimensions of fungal diversity has major implications for the control of diseases in humans, plants, and animals and in the overall health of ecosystems on the planet. One ancient evolutionary strategy organisms use to manage interactions with microbes, including fungi, is to produce host defense peptides (HDPs). HDPs and their synthetic analogs have been subjects of interest as potential therapeutic agents. Due to increases in fungal disease worldwide, there is great interest in developing novel antifungal agents. Here we describe activity of polymeric HDP analogs against fungi from 18 pathogenic genera composed of 41 species and 72 isolates. The synthetic polymers are members of the nylon-3 family (poly-β-amino acid materials). Three different nylon-3 polymers show high efficacy against surprisingly diverse fungi. Across the phylogenetic spectrum (with the exception of Aspergillus species), yeasts, dermatophytes, dimorphic fungi, and molds were all sensitive to the effects of these polymers. Even fungi intrinsically resistant to current antifungal drugs, such as the causative agents of mucormycosis (Rhizopus spp.) and those with acquired resistance to azole drugs, showed nylon-3 polymer sensitivity. In addition, the emerging pathogens Pseudogymnoascus destructans (cause of white nose syndrome in bats) and Candida auris (cause of nosocomial infections of humans) were also sensitive. The three nylon-3 polymers exhibited relatively low toxicity toward mammalian cells. These findings raise the possibility that nylon-3 polymers could be useful against fungi for which there are only limited and/or no antifungal agents available at present.IMPORTANCE Fungi reside in all ecosystems on earth and impart both positive and negative effects on human, plant, and animal health. Fungal disease is on the rise worldwide, and there is a critical need for more effective and less toxic antifungal agents. Nylon-3 polymers are short, sequence random, poly-β-amino acid materials that can be designed to manifest antimicrobial properties. Here, we describe three nylon-3 polymers with potent activity against the most phylogenetically diverse set of fungi evaluated thus far in a single study. In contrast to traditional peptides, nylon-3 polymers are highly stable to proteolytic degradation and can be produced efficiently in large quantities at low cost. The ability to modify nylon-3 polymer composition easily creates an opportunity to tailor efficacy and toxicity, which makes these materials attractive as potential broad-spectrum antifungal therapeutics.


Standardized metadata for human pathogen/vector genomic sequences.

  • Vivien G Dugan‎ et al.
  • PloS one‎
  • 2014‎

High throughput sequencing has accelerated the determination of genome sequences for thousands of human infectious disease pathogens and dozens of their vectors. The scale and scope of these data are enabling genotype-phenotype association studies to identify genetic determinants of pathogen virulence and drug/insecticide resistance, and phylogenetic studies to track the origin and spread of disease outbreaks. To maximize the utility of genomic sequences for these purposes, it is essential that metadata about the pathogen/vector isolate characteristics be collected and made available in organized, clear, and consistent formats. Here we report the development of the GSCID/BRC Project and Sample Application Standard, developed by representatives of the Genome Sequencing Centers for Infectious Diseases (GSCIDs), the Bioinformatics Resource Centers (BRCs) for Infectious Diseases, and the U.S. National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health (NIH), informed by interactions with numerous collaborating scientists. It includes mapping to terms from other data standards initiatives, including the Genomic Standards Consortium's minimal information (MIxS) and NCBI's BioSample/BioProjects checklists and the Ontology for Biomedical Investigations (OBI). The standard includes data fields about characteristics of the organism or environmental source of the specimen, spatial-temporal information about the specimen isolation event, phenotypic characteristics of the pathogen/vector isolated, and project leadership and support. By modeling metadata fields into an ontology-based semantic framework and reusing existing ontologies and minimum information checklists, the application standard can be extended to support additional project-specific data fields and integrated with other data represented with comparable standards. The use of this metadata standard by all ongoing and future GSCID sequencing projects will provide a consistent representation of these data in the BRC resources and other repositories that leverage these data, allowing investigators to identify relevant genomic sequences and perform comparative genomics analyses that are both statistically meaningful and biologically relevant.


Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus.

  • Ronald P de Vries‎ et al.
  • Genome biology‎
  • 2017‎

The fungal genus Aspergillus is of critical importance to humankind. Species include those with industrial applications, important pathogens of humans, animals and crops, a source of potent carcinogenic contaminants of food, and an important genetic model. The genome sequences of eight aspergilli have already been explored to investigate aspects of fungal biology, raising questions about evolution and specialization within this genus.


Terpenoid balance in Aspergillus nidulans unveiled by heterologous squalene synthase expression.

  • Sung Chul Park‎ et al.
  • Science advances‎
  • 2024‎

Filamentous fungi produce numerous uncharacterized natural products (NPs) that are often challenging to characterize because of cryptic expression in laboratory conditions. Previously, we have successfully isolated novel NPs by expressing fungal artificial chromosomes (FACs) from a variety of fungal species into Aspergillus nidulans. Here, we demonstrate a twist to FAC utility wherein heterologous expression of a Pseudogymnoascus destructans FAC in A. nidulans altered endogenous terpene biosynthetic pathways. In contrast to wild type, the FAC transformant produced increased levels of squalene and aspernidine type compounds, including three new nidulenes (1- 2, and 5), and lost nearly all ability to synthesize the major A. nidulans characteristic terpene, austinol. Deletion of a squalene synthase gene in the FAC restored wild-type chemical profiles. The altered squalene to farnesyl pyrophosphate ratio leading to synthesis of nidulenes and aspernidines at the expense of farnesyl pyrophosphate-derived austinols provides unexpected insight into routes of terpene synthesis in fungi.


The IGS Standard Operating Procedure for Automated Prokaryotic Annotation.

  • Kevin Galens‎ et al.
  • Standards in genomic sciences‎
  • 2011‎

The Institute for Genome Sciences (IGS) has developed a prokaryotic annotation pipeline that is used for coding gene/RNA prediction and functional annotation of Bacteria and Archaea. The fully automated pipeline accepts one or many genomic sequences as input and produces output in a variety of standard formats. Functional annotation is primarily based on similarity searches and motif finding combined with a hierarchical rule based annotation system. The output annotations can also be loaded into a relational database and accessed through visualization tools.


Toward a standard in structural genome annotation for prokaryotes.

  • H James Tripp‎ et al.
  • Standards in genomic sciences‎
  • 2015‎

In an effort to identify the best practice for finding genes in prokaryotic genomes and propose it as a standard for automated annotation pipelines, 1,004,576 peptides were collected from various publicly available resources, and were used as a basis to evaluate various gene-calling methods. The peptides came from 45 bacterial replicons with an average GC content from 31 % to 74 %, biased toward higher GC content genomes. Automated, manual, and semi-manual methods were used to tally errors in three widely used gene calling methods, as evidenced by peptides mapped outside the boundaries of called genes.


Aspergillus fumigatus Copper Export Machinery and Reactive Oxygen Intermediate Defense Counter Host Copper-Mediated Oxidative Antimicrobial Offense.

  • Philipp Wiemann‎ et al.
  • Cell reports‎
  • 2017‎

The Fenton-chemistry-generating properties of copper ions are considered a potent phagolysosome defense against pathogenic microbes, yet our understanding of underlying host/microbe dynamics remains unclear. We address this issue in invasive aspergillosis and demonstrate that host and fungal responses inextricably connect copper and reactive oxygen intermediate (ROI) mechanisms. Loss of the copper-binding transcription factor AceA yields an Aspergillus fumigatus strain displaying increased sensitivity to copper and ROI in vitro, increased intracellular copper concentrations, decreased survival in challenge with murine alveolar macrophages (AMΦs), and reduced virulence in a non-neutropenic murine model. ΔaceA survival is remediated by dampening of host ROI (chemically or genetically) or enhancement of copper-exporting activity (CrpA) in A. fumigatus. Our study exposes a complex host/microbe multifactorial interplay that highlights the importance of host immune status and reveals key targetable A. fumigatus counter-defenses.


Revitalization of a Forward Genetic Screen Identifies Three New Regulators of Fungal Secondary Metabolism in the Genus Aspergillus.

  • Brandon T Pfannenstiel‎ et al.
  • mBio‎
  • 2017‎

The study of aflatoxin in Aspergillus spp. has garnered the attention of many researchers due to aflatoxin's carcinogenic properties and frequency as a food and feed contaminant. Significant progress has been made by utilizing the model organism Aspergillus nidulans to characterize the regulation of sterigmatocystin (ST), the penultimate precursor of aflatoxin. A previous forward genetic screen identified 23 A. nidulans mutants involved in regulating ST production. Six mutants were characterized from this screen using classical mapping (five mutations in mcsA) and complementation with a cosmid library (one mutation in laeA). The remaining mutants were backcrossed and sequenced using Illumina and Ion Torrent sequencing platforms. All but one mutant contained one or more sequence variants in predicted open reading frames. Deletion of these genes resulted in identification of mutant alleles responsible for the loss of ST production in 12 of the 17 remaining mutants. Eight of these mutations were in genes already known to affect ST synthesis (laeA, mcsA, fluG, and stcA), while the remaining four mutations (in laeB, sntB, and hamI) were in previously uncharacterized genes not known to be involved in ST production. Deletion of laeB, sntB, and hamI in A. flavus results in loss of aflatoxin production, confirming that these regulators are conserved in the aflatoxigenic aspergilli. This report highlights the multifaceted regulatory mechanisms governing secondary metabolism in Aspergillus Additionally, these data contribute to the increasing number of studies showing that forward genetic screens of fungi coupled with whole-genome resequencing is a robust and cost-effective technique.IMPORTANCE In a postgenomic world, reverse genetic approaches have displaced their forward genetic counterparts. The techniques used in forward genetics to identify loci of interest were typically very cumbersome and time-consuming, relying on Mendelian traits in model organisms. The current work was pursued not only to identify alleles involved in regulation of secondary metabolism but also to demonstrate a return to forward genetics to track phenotypes and to discover genetic pathways that could not be predicted through a reverse genetics approach. While identification of mutant alleles from whole-genome sequencing has been done before, here we illustrate the possibility of coupling this strategy with a genetic screen to identify multiple alleles of interest. Sequencing of classically derived mutants revealed several uncharacterized genes, which represent novel pathways to regulate and control the biosynthesis of sterigmatocystin and of aflatoxin, a societally and medically important mycotoxin.


Comparative genomics of enterococci: variation in Enterococcus faecalis, clade structure in E. faecium, and defining characteristics of E. gallinarum and E. casseliflavus.

  • Kelli L Palmer‎ et al.
  • mBio‎
  • 2012‎

The enterococci are Gram-positive lactic acid bacteria that inhabit the gastrointestinal tracts of diverse hosts. However, Enterococcus faecium and E. faecalis have emerged as leading causes of multidrug-resistant hospital-acquired infections. The mechanism by which a well-adapted commensal evolved into a hospital pathogen is poorly understood. In this study, we examined high-quality draft genome data for evidence of key events in the evolution of the leading causes of enterococcal infections, including E. faecalis, E. faecium, E. casseliflavus, and E. gallinarum. We characterized two clades within what is currently classified as E. faecium and identified traits characteristic of each, including variation in operons for cell wall carbohydrate and putative capsule biosynthesis. We examined the extent of recombination between the two E. faecium clades and identified two strains with mosaic genomes. We determined the underlying genetics for the defining characteristics of the motile enterococci E. casseliflavus and E. gallinarum. Further, we identified species-specific traits that could be used to advance the detection of medically relevant enterococci and their identification to the species level.


Longitudinal home self-collection of capillary blood using home RNA correlates interferon and innate viral defense pathways with SARS-CoV-2 viral clearance.

  • Fang Yun Lim‎ et al.
  • medRxiv : the preprint server for health sciences‎
  • 2023‎

Blood transcriptional profiling is a powerful tool to evaluate immune responses to infection; however, blood collection via traditional phlebotomy remains a barrier to precise characterization of the immune response in dynamic infections (e.g., respiratory viruses). Here we present an at-home self-collection methodology, home RNA, to study the host transcriptional response during acute SARS-CoV-2 infections. This method uniquely enables high frequency measurement of the host immune kinetics in non-hospitalized adults during the acute and most dynamic stage of their infection. COVID-19+ and healthy participants self-collected blood every other day for two weeks with daily nasal swabs and symptom surveys to track viral load kinetics and symptom burden, respectively. While healthy uninfected participants showed remarkably stable immune kinetics with no significant dynamic genes, COVID-19+ participants, on the contrary, depicted a robust response with over 418 dynamic genes associated with interferon and innate viral defense pathways. When stratified by vaccination status, we detected distinct response signatures between unvaccinated and breakthrough (vaccinated) infection subgroups; unvaccinated individuals portrayed a response repertoire characterized by higher innate antiviral responses, interferon signaling, and cytotoxic lymphocyte responses while breakthrough infections portrayed lower levels of interferon signaling and enhanced early cell-mediated response. Leveraging cross-platform longitudinal sampling (nasal swabs and blood), we observed that IFI27 , a key viral response gene, tracked closely with SARS-CoV-2 viral clearance in individual participants. Taken together, these results demonstrate that at-home sampling can capture key host antiviral responses and facilitate frequent longitudinal sampling to detect transient host immune kinetics during dynamic immune states.


FleA Expression in Aspergillus fumigatus Is Recognized by Fucosylated Structures on Mucins and Macrophages to Prevent Lung Infection.

  • Sheena C Kerr‎ et al.
  • PLoS pathogens‎
  • 2016‎

The immune mechanisms that recognize inhaled Aspergillus fumigatus conidia to promote their elimination from the lungs are incompletely understood. FleA is a lectin expressed by Aspergillus fumigatus that has twelve binding sites for fucosylated structures that are abundant in the glycan coats of multiple plant and animal proteins. The role of FleA is unknown: it could bind fucose in decomposed plant matter to allow Aspergillus fumigatus to thrive in soil, or it may be a virulence factor that binds fucose in lung glycoproteins to cause Aspergillus fumigatus pneumonia. Our studies show that FleA protein and Aspergillus fumigatus conidia bind avidly to purified lung mucin glycoproteins in a fucose-dependent manner. In addition, FleA binds strongly to macrophage cell surface proteins, and macrophages bind and phagocytose fleA-deficient (∆fleA) conidia much less efficiently than wild type (WT) conidia. Furthermore, a potent fucopyranoside glycomimetic inhibitor of FleA inhibits binding and phagocytosis of WT conidia by macrophages, confirming the specific role of fucose binding in macrophage recognition of WT conidia. Finally, mice infected with ΔfleA conidia had more severe pneumonia and invasive aspergillosis than mice infected with WT conidia. These findings demonstrate that FleA is not a virulence factor for Aspergillus fumigatus. Instead, host recognition of FleA is a critical step in mechanisms of mucin binding, mucociliary clearance, and macrophage killing that prevent Aspergillus fumigatus pneumonia.


Genomic and functional analyses of Mycobacterium tuberculosis strains implicate ald in D-cycloserine resistance.

  • Christopher A Desjardins‎ et al.
  • Nature genetics‎
  • 2016‎

A more complete understanding of the genetic basis of drug resistance in Mycobacterium tuberculosis is critical for prompt diagnosis and optimal treatment, particularly for toxic second-line drugs such as D-cycloserine. Here we used the whole-genome sequences from 498 strains of M. tuberculosis to identify new resistance-conferring genotypes. By combining association and correlated evolution tests with strategies for amplifying signal from rare variants, we found that loss-of-function mutations in ald (Rv2780), encoding L-alanine dehydrogenase, were associated with unexplained drug resistance. Convergent evolution of this loss of function was observed exclusively among multidrug-resistant strains. Drug susceptibility testing established that ald loss of function conferred resistance to D-cycloserine, and susceptibility to the drug was partially restored by complementation of ald. Clinical strains with mutations in ald and alr exhibited increased resistance to D-cycloserine when cultured in vitro. Incorporation of D-cycloserine resistance in novel molecular diagnostics could allow for targeted use of this toxic drug among patients with susceptible infections.


Analysis of the transcriptome of the protozoan Theileria parva using MPSS reveals that the majority of genes are transcriptionally active in the schizont stage.

  • Richard Bishop‎ et al.
  • Nucleic acids research‎
  • 2005‎

Massively parallel signature sequencing (MPSS) was used to analyze the transcriptome of the intracellular protozoan Theileria parva. In total 1,095,000, 20 bp sequences representing 4371 different signatures were generated from T.parva schizonts. Reproducible signatures were identified within 73% of potentially detectable predicted genes and 83% had signatures in at least one MPSS cycle. A predicted leader peptide was detected on 405 expressed genes. The quantitative range of signatures was 4-52,256 transcripts per million (t.p.m.). Rare transcripts (<50 t.p.m.) were detected from 36% of genes. Sequence signatures approximated a lognormal distribution, as in microarray. Transcripts were widely distributed throughout the genome, although only 47% of 138 telomere-associated open reading frames exhibited signatures. Antisense signatures comprised 13.8% of the total, comparable with Plasmodium. Eighty five predicted genes with antisense signatures lacked a sense signature. Antisense transcripts were independently amplified from schizont cDNA and verified by sequencing. The MPSS transcripts per million for seven genes encoding schizont antigens recognized by bovine CD8 T cells varied 1000-fold. There was concordance between transcription and protein expression for heat shock proteins that were very highly expressed according to MPSS and proteomics. The data suggests a low level of baseline transcription from the majority of protein-coding genes.


Fungal Isocyanide Synthases and Xanthocillin Biosynthesis in Aspergillus fumigatus.

  • Fang Yun Lim‎ et al.
  • mBio‎
  • 2018‎

Microbial secondary metabolites, including isocyanide moieties, have been extensively mined for their repertoire of bioactive properties. Although the first naturally occurring isocyanide (xanthocillin) was isolated from the fungus Penicillium notatum over half a century ago, the biosynthetic origins of fungal isocyanides remain unknown. Here we report the identification of a family of isocyanide synthases (ICSs) from the opportunistic human pathogen Aspergillus fumigatus Comparative metabolomics of overexpression or knockout mutants of ICS candidate genes led to the discovery of a fungal biosynthetic gene cluster (BGC) that produces xanthocillin (xan). Detailed analysis of xanthocillin biosynthesis in A. fumigatus revealed several previously undescribed compounds produced by the xan BGC, including two novel members of the melanocin family of compounds. We found both the xan BGC and a second ICS-containing cluster, named the copper-responsive metabolite (crm) BGC, to be transcriptionally responsive to external copper levels and further demonstrated that production of metabolites from the xan BGC is increased during copper starvation. The crm BGC includes a novel type of fungus-specific ICS-nonribosomal peptide synthase (NRPS) hybrid enzyme, CrmA. This family of ICS-NRPS hybrid enzymes is highly enriched in fungal pathogens of humans, insects, and plants. Phylogenetic assessment of all ICSs spanning the tree of life shows not only high prevalence throughout the fungal kingdom but also distribution in species not previously known to harbor BGCs, indicating an untapped resource of fungal secondary metabolism.IMPORTANCE Fungal ICSs are an untapped resource in fungal natural product research. Their isocyanide products have been implicated in plant and insect pathogenesis due to their ability to coordinate transition metals and disable host metalloenzymes. The discovery of a novel isocyanide-producing family of hybrid ICS-NRPS enzymes enriched in medically and agriculturally important fungal pathogens may reveal mechanisms underlying pathogenicity and afford opportunities to discover additional families of isocyanides. Furthermore, the identification of noncanonical ICS BGCs will enable refinement of BGC prediction algorithms to expand on the secondary metabolic potential of fungal and bacterial species. The identification of genes related to ICS BGCs in fungal species not previously known for secondary metabolite-producing capabilities (e.g., Saccharomyces spp.) contributes to our understanding of the evolution of BGC in fungi.


An LaeA- and BrlA-Dependent Cellular Network Governs Tissue-Specific Secondary Metabolism in the Human Pathogen Aspergillus fumigatus.

  • Abigail L Lind‎ et al.
  • mSphere‎
  • 2018‎

Biosynthesis of many ecologically important secondary metabolites (SMs) in filamentous fungi is controlled by several global transcriptional regulators, like the chromatin modifier LaeA, and tied to both development and vegetative growth. In Aspergillus molds, asexual development is regulated by the BrlA > AbaA > WetA transcriptional cascade. To elucidate BrlA pathway involvement in SM regulation, we examined the transcriptional and metabolic profiles of ΔbrlA, ΔabaA, and ΔwetA mutant and wild-type strains of the human pathogen Aspergillus fumigatus. We find that BrlA, in addition to regulating production of developmental SMs, regulates vegetative SMs and the SrbA-regulated hypoxia stress response in a concordant fashion to LaeA. We further show that the transcriptional and metabolic equivalence of the ΔbrlA and ΔlaeA mutations is mediated by an LaeA requirement preventing heterochromatic marks in the brlA promoter. These results provide a framework for the cellular network regulating not only fungal SMs but diverse cellular processes linked to virulence of this pathogen. IMPORTANCE Filamentous fungi produce a spectacular variety of small molecules, commonly known as secondary or specialized metabolites (SMs), which are critical to their ecologies and lifestyles (e.g., penicillin, cyclosporine, and aflatoxin). Elucidation of the regulatory network that governs SM production is a major question of both fundamental and applied research relevance. To shed light on the relationship between regulation of development and regulation of secondary metabolism in filamentous fungi, we performed global transcriptomic and metabolomic analyses on mutant and wild-type strains of the human pathogen Aspergillus fumigatus under conditions previously shown to induce the production of both vegetative growth-specific and asexual development-specific SMs. We find that the gene brlA, previously known as a master regulator of asexual development, is also a master regulator of secondary metabolism and other cellular processes. We further show that brlA regulation of SM is mediated by laeA, one of the master regulators of SM, providing a framework for the cellular network regulating not only fungal SMs but diverse cellular processes linked to virulence of this pathogen.


Genome wide survey, discovery and evolution of repetitive elements in three Entamoeba species.

  • Hernan Lorenzi‎ et al.
  • BMC genomics‎
  • 2008‎

Identification and mapping of repetitive elements is a key step for accurate gene prediction and overall structural annotation of genomes. During the assembly and annotation of three highly repetitive amoeba genomes, Entamoeba histolytica, Entamoeba dispar, and Entamoeba invadens, we performed comparative sequence analysis to identify and map all class I and class II transposable elements in their sequences.


homeRNA self-blood collection enables high-frequency temporal profiling of pre-symptomatic host immune kinetics to respiratory viral infection: a prospective cohort study.

  • Fang Yun Lim‎ et al.
  • medRxiv : the preprint server for health sciences‎
  • 2024‎

Early host immunity to acute respiratory infections (ARIs) is heterogenous, dynamic, and critical to an individual's infection outcome. Due to limitations in sampling frequency/timepoints, kinetics of early immune dynamics in natural human infections remain poorly understood. In this nationwide prospective cohort study, we leveraged a self-blood collection tool (homeRNA) to profile detailed kinetics of the pre-symptomatic to convalescence host immunity to contemporaneous respiratory pathogens.


The genomic diversification of the whole Acinetobacter genus: origins, mechanisms, and consequences.

  • Marie Touchon‎ et al.
  • Genome biology and evolution‎
  • 2014‎

Bacterial genomics has greatly expanded our understanding of microdiversification patterns within a species, but analyses at higher taxonomical levels are necessary to understand and predict the independent rise of pathogens in a genus. We have sampled, sequenced, and assessed the diversity of genomes of validly named and tentative species of the Acinetobacter genus, a clade including major nosocomial pathogens and biotechnologically important species. We inferred a robust global phylogeny and delimited several new putative species. The genus is very ancient and extremely diverse: Genomes of highly divergent species share more orthologs than certain strains within a species. We systematically characterized elements and mechanisms driving genome diversification, such as conjugative elements, insertion sequences, and natural transformation. We found many error-prone polymerases that may play a role in resistance to toxins, antibiotics, and in the generation of genetic variation. Surprisingly, temperate phages, poorly studied in Acinetobacter, were found to account for a significant fraction of most genomes. Accordingly, many genomes encode clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems with some of the largest CRISPR-arrays found so far in bacteria. Integrons are strongly overrepresented in Acinetobacter baumannii, which correlates with its frequent resistance to antibiotics. Our data suggest that A. baumannii arose from an ancient population bottleneck followed by population expansion under strong purifying selection. The outstanding diversification of the species occurred largely by horizontal transfer, including some allelic recombination, at specific hotspots preferentially located close to the replication terminus. Our work sets a quantitative basis to understand the diversification of Acinetobacter into emerging resistant and versatile pathogens.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: