Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 177 papers

Expression of peroxisome proliferator-activated receptor-gamma in key neuronal subsets regulating glucose metabolism and energy homeostasis.

  • David A Sarruf‎ et al.
  • Endocrinology‎
  • 2009‎

In addition to increasing insulin sensitivity and adipogenesis, peroxisome proliferator-activated receptor (PPAR)-gamma agonists cause weight gain and hyperphagia. Given the central role of the brain in the control of energy homeostasis, we sought to determine whether PPARgamma is expressed in key brain areas involved in metabolic regulation. Using immunohistochemistry, PPARgamma distribution and its colocalization with neuron-specific protein markers were investigated in rat and mouse brain sections spanning the hypothalamus, the ventral tegmental area, and the nucleus tractus solitarius. In several brain areas, nuclear PPARgamma immunoreactivity was detected in cells that costained for neuronal nuclei, a neuronal marker. In the hypothalamus, PPARgamma immunoreactivity was observed in a majority of neurons in the arcuate (including both agouti related protein and alpha-MSH containing cells) and ventromedial hypothalamic nuclei and was also present in the hypothalamic paraventricular nucleus, the lateral hypothalamic area, and tyrosine hydroxylase-containing neurons in the ventral tegmental area but was not expressed in the nucleus tractus solitarius. To validate and extend these histochemical findings, we generated mice with neuron-specific PPARgamma deletion using nestin cre-LoxP technology. Compared with littermate controls, neuron-specific PPARgamma knockout mice exhibited dramatic reductions of both hypothalamic PPARgamma mRNA levels and PPARgamma immunoreactivity but showed no differences in food intake or body weight over a 4-wk study period. We conclude that: 1) PPARgamma mRNA and protein are expressed in the hypothalamus, 2) neurons are the predominant source of PPARgamma in the central nervous system, although it is likely expressed by nonneuronal cell types as well, and 3) arcuate nucleus neurons that control energy homeostasis and glucose metabolism are among those in which PPARgamma is expressed.


The hippo pathway effector YAP regulates motility, invasion, and castration-resistant growth of prostate cancer cells.

  • Lin Zhang‎ et al.
  • Molecular and cellular biology‎
  • 2015‎

Yes-associated protein (YAP) is an effector of the Hippo tumor suppressor pathway. The functional significance of YAP in prostate cancer has remained elusive. In this study, we first show that enhanced expression of YAP is able to transform immortalized prostate epithelial cells and promote migration and invasion in both immortalized and cancerous prostate cells. We found that YAP mRNA was upregulated in androgen-insensitive prostate cancer cells (LNCaP-C81 and LNCaP-C4-2 cells) compared to the level in androgen-sensitive LNCaP cells. Importantly, ectopic expression of YAP activated androgen receptor signaling and was sufficient to promote LNCaP cells from an androgen-sensitive state to an androgen-insensitive state in vitro, and YAP conferred castration resistance in vivo. Accordingly, YAP knockdown greatly reduced the rates of migration and invasion of LNCaP-C4-2 cells and under androgen deprivation conditions largely blocked cell division in LNCaP-C4-2 cells. Mechanistically, we found that extracellular signal-regulated kinase-ribosomal s6 kinase signaling was downstream of YAP for cell survival, migration, and invasion in androgen-insensitive cells. Finally, immunohistochemistry showed significant upregulation and hyperactivation of YAP in castration-resistant prostate tumors compared to their levels in hormone-responsive prostate tumors. Together, our results identify YAP to be a novel regulator in prostate cancer cell motility, invasion, and castration-resistant growth and as a potential therapeutic target for metastatic castration-resistant prostate cancer (CRPC).


Global deletion of Ankrd1 results in a wound-healing phenotype associated with dermal fibroblast dysfunction.

  • Susan E Samaras‎ et al.
  • The American journal of pathology‎
  • 2015‎

The expression of ankyrin repeat domain protein 1 (Ankrd1), a transcriptional cofactor and sarcomeric component, is strongly elevated by wounding and tissue injury. We developed a conditional Ankrd1(fl/fl) mouse, performed global deletion with Sox2-cre, and assessed the role of this protein in cutaneous wound healing. Although global deletion of Ankrd1 did not affect mouse viability or development, Ankrd1(-/-) mice had at least two significant wound-healing phenotypes: extensive necrosis of ischemic skin flaps, which was reversed by adenoviral expression of ANKRD1, and delayed excisional wound closure, which was characterized by decreased contraction and reduced granulation tissue thickness. Skin fibroblasts isolated from Ankrd1(-/-) mice did not spread or migrate on collagen- or fibronectin-coated surfaces as efficiently as fibroblasts isolated from Ankrd1(fl/fl) mice. More important, Ankrd1(-/-) fibroblasts failed to contract three-dimensional floating collagen gels. Reconstitution of ANKRD1 by adenoviral infection stimulated both collagen gel contraction and actin fiber organization. These in vitro data were consistent with in vivo wound closure studies, and suggest that ANKRD1 is important for the proper interaction of fibroblasts with a compliant collagenous matrix both in vitro and in vivo.


Bone marrow deficiency of MCPIP1 results in severe multi-organ inflammation but diminishes atherogenesis in hyperlipidemic mice.

  • Fang Yu‎ et al.
  • PloS one‎
  • 2013‎

MCPIP1 is a newly identified protein that profoundly impacts immunity and inflammation. We aim to test if MCPIP1 deficiency in hematopoietic cells results in systemic inflammation and accelerates atherogenesis in mice.


Involvement of post-transcriptional regulation of FOXO1 by HuR in 5-FU-induced apoptosis in breast cancer cells.

  • Yunbo Li‎ et al.
  • Oncology letters‎
  • 2013‎

The post-transcriptional control of specific mRNAs is a widespread mechanism of gene regulation, which contributes to numerous biological processes in a number of cell types. The Forkhead box O (FoxO) transcription factor FOXO1 is an important tumor suppressor involved in apoptosis, the cell cycle, DNA damage repair and oxidative stress. Bioinformatic prediction identified that the 3' untranslated region (UTR) of FOXO1 is enriched with binding motifs for the human ELAV/Hu protein (HuR), indicating that FOXO1 is a potential target of HuR. Luciferase reporter assays demonstrate that HuR specifically regulates FOXO1 expression through AU-rich elements (AREs) within the FOXO1 3' UTR. Immunoprecipitation studies confirmed that HuR associates with FOXO1 mRNA in MDA-MB-231 breast cancer cells and that HuR upregulates FOXO1 mRNA levels through increased mRNA stability. Using a HuR loss- and gain-of-function approach, we revealed that FOXO1 expression was correspondingly decreased or increased in MDA-MB-231 cells. Functional assays demonstrated that HuR and FOXO1 expression levels were markedly enhanced upon 5-fluorouracil (5-FU) stimulation in MDA-MB-231 cells. Knockdown of HuR apparently abrogated 5-FU-induced apoptosis detected by caspase-3 activities. Furthermore, in HuR knockdown cells, additional overexpression of FOXO1 moderately recovered 5-FU-induced apoptosis, which verified that HuR-modulated apoptosis upon 5-FU treatment was partially mediated by its post-transcriptional regulation of FOXO1. Therefore, modulating FOXO1 expression has been suggested to lead to the development of new therapeutic treatments for certain types of cancer.


CHIP promotes thyroid cancer proliferation via activation of the MAPK and AKT pathways.

  • Li Zhang‎ et al.
  • Biochemical and biophysical research communications‎
  • 2016‎

The carboxyl terminus of Hsp70-interacting protein (CHIP) is a U box-type ubiquitin ligase that plays crucial roles in various biological processes, including tumor progression. To date, the functional mechanism of CHIP in thyroid cancer remains unknown. Here, we obtained evidence of upregulation of CHIP in thyroid cancer tissues and cell lines. CHIP overexpression markedly enhanced thyroid cancer cell viability and colony formation in vitro and accelerated tumor growth in vivo. Conversely, CHIP knockdown impaired cell proliferation and tumor growth. Notably, CHIP promoted cell growth through activation of MAPK and AKT pathways, subsequently decreasing p27 and increasing cyclin D1 and p-FOXO3a expression. Our findings collectively indicate that CHIP functions as an oncogene in thyroid cancer, and is therefore a potential therapeutic target for this disease.


Micelle-Forming Dexamethasone Prodrug Attenuates Nephritis in Lupus-Prone Mice without Apparent Glucocorticoid Side Effects.

  • Zhenshan Jia‎ et al.
  • ACS nano‎
  • 2018‎

Nephritis is one of the major complications of systemic lupus erythematosus. While glucocorticoids (GCs) are frequently used as the first-line treatment for lupus nephritis (LN), long-term GC usage is often complicated by severe adverse effects. To address this challenge, we have developed a polyethylene glycol-based macromolecular prodrug (ZSJ-0228) of dexamethasone, which self-assembles into micelles in aqueous media. When compared to the dose equivalent daily dexamethasone 21-phosphate disodium (Dex) treatment, monthly intravenous administration of ZSJ-0228 for two months significantly improved the survival of lupus-prone NZB/W F1 mice and was much more effective in normalizing proteinuria, with clear histological evidence of nephritis resolution. Different from the dose equivalent daily Dex treatment, monthly ZSJ-0228 administration has no impact on the serum anti-double-stranded DNA (anti-dsDNA) antibody level but can significantly reduce renal immune complex deposition. No significant systemic toxicities of GCs ( e. g., total IgG reduction, adrenal gland atrophy, and osteopenia) were found to be associated with ZSJ-0228 treatment. In vivo imaging and flow cytometry studies revealed that the fluorescent-labeled ZSJ-0228 primarily distributed to the inflamed kidney after systemic administration, with renal myeloid cells and proximal tubular epithelial cells mainly responsible for its kidney retention. Collectively, these data suggest that the ZSJ-0228's potent local anti-inflammatory/immunosuppressive effects and improved safety may be attributed to its nephrotropicity and cellular sequestration at the inflamed kidney tissues. Pending further optimization, it may be developed into an effective and safe therapy for improved clinical management of LN.


The 3p14.2 tumour suppressor ADAMTS9 is inactivated by promoter CpG methylation and inhibits tumour cell growth in breast cancer.

  • Bianfei Shao‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2018‎

Chromosome region 3p12-14 is an important tumour suppressor gene (TSG) locus for multiple cancers. ADAMTS9, a member of the metalloprotease large family, has been identified as a candidate 3p14.2 TSG inactivated by aberrant promoter CpG methylation in several carcinomas, but little known about its expression and function in breast cancer. In this report, ADAMTS9 expression and methylation was analysed in breast cancer cell lines and tissue samples. ADAMTS9 RNA was significantly down-regulated in breast cancer cell lines (6/8). After treating the cells with demethylation agent Aza and TSA, ADAMTS9 expression was dramatically increased. Bisulphite genomic sequencing and methylation-specific PCR detected promoter methylation, which was associated with decreased ADAMTS9 expression. Hypermethylation was also detected in 130/219 (59.4%) of primary tumours but only in 4.5% (2/44) of paired surgical margin tissues. Ectopic expression of ADAMTS9 in tumor cells induced significant growth suppression, cell cycle arrest at the G0/G1 phase, enhanced apoptosis and reduced cell migration and invasion. Conditioned culture medium from ADAMTS9-transfected BT549 cells markedly disrupted tube formation ability of human umbilical vein endothelial cell (HUVEC) in Matrigel. Furthermore, ADAMTS9 inhibited AKT signaling and its downstream targets (MDM2, p53, p21, p27, E-cadherin, VIM, SNAIL, VEGFA, NFκB-p65 and MMP2). In addition, we demonstrated, for the first time, that ADAMTS9 inhibits AKT signaling, through suppressing its upstream activators EGFR and TGFβ1/TβR(I/II) in breast cancer cells. Our results suggest that ADAMTS9 is a TSG epigenetically inactivated in breast cancer, which functions through blocking EGFR- and TGFβ1/TβR(I/II)-activated AKT signaling.


Homocysteine directly interacts and activates the angiotensin II type I receptor to aggravate vascular injury.

  • Tuoyi Li‎ et al.
  • Nature communications‎
  • 2018‎

Hyperhomocysteinemia (HHcy) is a risk factor for various cardiovascular diseases. However, the mechanism underlying HHcy-aggravated vascular injury remains unclear. Here we show that the aggravation of abdominal aortic aneurysm by HHcy is abolished in mice with genetic deletion of the angiotensin II type 1 (AT1) receptor and in mice treated with an AT1 blocker. We find that homocysteine directly activates AT1 receptor signalling. Homocysteine displaces angiotensin II and limits its binding to AT1 receptor. Bioluminescence resonance energy transfer analysis reveals distinct conformational changes of AT1 receptor upon binding to angiotensin II and homocysteine. Molecular dynamics and site-directed mutagenesis experiments suggest that homocysteine regulates the conformation of the AT1 receptor both orthosterically and allosterically by forming a salt bridge and a disulfide bond with its Arg167 and Cys289 residues, respectively. Together, these findings suggest that strategies aimed at blocking the AT1 receptor may mitigate HHcy-associated aneurysmal vascular injuries.


Deficiency of FAM3D (Family With Sequence Similarity 3, Member D), A Novel Chemokine, Attenuates Neutrophil Recruitment and Ameliorates Abdominal Aortic Aneurysm Development.

  • Li He‎ et al.
  • Arteriosclerosis, thrombosis, and vascular biology‎
  • 2018‎

Chemokine-mediated neutrophil recruitment contributes to the pathogenesis of abdominal aortic aneurysm (AAA) and may serve as a promising therapeutic target. FAM3D (family with sequence similarity 3, member D) is a recently identified novel chemokine. Here, we aimed to explore the role of FAM3D in neutrophil recruitment and AAA development.


The Complete Mitochondrial Genome of Ugyops sp. (Hemiptera: Delphacidae).

  • Fang Yu‎ et al.
  • Journal of insect science (Online)‎
  • 2018‎

The complete mitochondrial genome (mitogenome) of Ugyops sp. (Hemiptera: Delphacidae) was sequenced, making it the first determined mitogenome from the subfamily Asiracinae, the basal clade of the family Delphacidae. The mitogenome was 15,259 bp in length with A + T content of 77.65% and contained 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNAs), and a control region. The gene order was identical with that of the ancestral insect. The nucleotide composition analysis indicated that the whole mitogenome was strongly A-skewed (0.288) and highly C-skewed (-0.270). For PCGs on the J-strand, the AT skew was positive, and the GC skew was negative. All PCGs started with canonical ATN codons, except for cox1 and nad5, which used CTG and GTG as start codon, respectively. All tRNAs could fold into typical cloverleaf secondary structures, with the exception of trnS1 (AGN), in which the dihydrouridine arm was reduced to a simple loop. The control region included a poly-T stretch downstream of the small rRNA gene (rrnS), a subregion of higher A + T content and tandemly repeated sequence near trnI. The mitogenome of Ugyops sp. could be very helpful in exploring the diversity and evolution of mitogenomes in Delphacidae.


Suppression of fumarate hydratase activity increases the efficacy of cisplatin-mediated chemotherapy in gastric cancer.

  • Hong-En Yu‎ et al.
  • Cell death & disease‎
  • 2019‎

Gastric cancer (GC) is one of the most common malignancies worldwide. Due to the low rate of early detection, most GC patients were diagnosed as advance stages and had poor response to chemotherapy. Some studies found that Fumarate hydratase (FH) participated in the DNA damage response and its deficiency was associated with tumorigenesis in some cancers. In this study, we investigated the relationship between FH and cisplatin (CDDP) sensitivity in GC cell lines. We found that FH was the most significant gene which induced by CDDP treatment and the suppression of FH could enhance the cytotoxicity of CDDP. Miconazole Nitrate (MN) could inhibit FH activity and enhance the effect of CDDP in vitro and in vivo. We also investigated the significance of expression of FH in GC tissues. The FH expression, which was higher in GC tissues than in noncancerous tissues, was negatively associated with the prognosis of patients. Together, these results revealed that FH is a reliable indicator for response to CDDP treatment in GC and the inhibition of FH may be a potential strategy to improve the effects of CDDP-based chemotherapy.


Integrative genomics analysis of various omics data and networks identify risk genes and variants vulnerable to childhood-onset asthma.

  • Xiuqing Ma‎ et al.
  • BMC medical genomics‎
  • 2020‎

Childhood-onset asthma is highly affected by genetic components. In recent years, many genome-wide association studies (GWAS) have reported a large group of genetic variants and susceptible genes associated with asthma-related phenotypes including childhood-onset asthma. However, the regulatory mechanisms of these genetic variants for childhood-onset asthma susceptibility remain largely unknown.


Effects of annulus defects and implantation of poly(lactic-co-glycolic acid) (PLGA)/fibrin gel scaffolds on nerves ingrowth in a rabbit model of annular injury disc degeneration.

  • Long Xin‎ et al.
  • Journal of orthopaedic surgery and research‎
  • 2017‎

Growth of nerve fibers has been shown to occur in a rabbit model of intravertebral disc degeneration (IVD) induced by needle puncture. As nerve growth may underlie the process of chronic pain in humans affected by disc degeneration, we sought to investigate the factors underlying nerve ingrowth in a minimally invasive annulotomy rabbit model of IVD by comparing the effects of empty disc defects with those of defects filled with poly(lactic-co-glycolic acid)/fibrin gel (PLGA) plugs.


Promoter hypomethylation of microRNA223 gene is associated with atherosclerotic cerebral infarction.

  • Zhibin Li‎ et al.
  • Atherosclerosis‎
  • 2017‎

microRNA223 (miR-223) plays an important role in the development of atherosclerosis and ischemic stroke. It is involved in regulation of multiple physiological and pathophysiological processes such as cholesterol metabolism, endothelial cell (EC) function, and thrombosis. Here we investigated the role of methylation regulation of MIR-223 promoter region in atherosclerotic cerebral infarction (ACI) patients.


Blood biomarkers as surrogate endpoints of treatment responses to aerobic exercise and cognitive training (ACT) in amnestic mild cognitive impairment: the blood biomarkers study protocol of a randomized controlled trial (the ACT Trial).

  • Danni Li‎ et al.
  • Trials‎
  • 2020‎

Alzheimer's disease (AD) is an epidemic with tremendous public health impacts because there are currently no disease-modifying therapeutics. Randomized controlled trials (RCTs) for prevention of AD dementia often use clinical endpoints that take years to manifest (e.g., cognition) or surrogate endpoints that are costly or invasive (e.g., magnetic resonance imaging [MRI]). Blood biomarkers represent a clinically applicable alternative surrogate endpoint for RCTs that would be both cost-effective and minimally invasive, but little is known about their value as surrogate endpoints for treatment responses in the prevention of AD dementia.


Diagnostic Significance of Plasma Levels of Novel Adipokines in Patients With Symptomatic Intra- and Extracranial Atherosclerotic Stenosis.

  • Fang Yu‎ et al.
  • Frontiers in neurology‎
  • 2019‎

Background: Adipokines have been proven to be associated with atherosclerotic diseases such as ischemic stroke and coronary heart disease. The role of novel adipokines in the development of symptomatic intracranial atherosclerotic stenosis (sICAS) and extracranial atherosclerotic stenosis (sECAS) has not yet been investigated. This study aimed to evaluate the plasma levels of novel adipokines in patients with sICAS and sECAS and their associations with the prognosis of sICAS groups. Methods: A total of 134 patients with acute ischemic stroke attribute to large-artery atherosclerosis (LAA) and 66 age- and sex-matched controls without atherosclerotic stenosis (NCAS) were included in this study. The LAA group was further sub-classified as sICAS (n = 102) and sECAS (n = 32) according to the location of atherosclerosis. Demographics, clinical parameters, angiographical features and plasma levels of novel adipokines (apelin, visfatin, omentin, RBP-4) were assayed and compared among groups. Results: LAA patients had significantly lower levels of omentin [39.92 (30.74-52.61) ng/ml vs. 54.42 (34.73-79.91) ng/ml, P < 0.001] and visfatin [11.32 (7.62-16.44) ng/ml vs. 13.01 (9.46-27.54) ng/ml, P < 0.001] than those in the NCAS group. Multiple logistic regression analysis identified that the lowest tertile of omentin was independently associated with LAA (OR, 3.423; 95% CI, 1.267-9.244, when referenced to the third tertile). Levels of omentin, visfatin and RBP-4 showed no significant difference between sICAS and sECAS groups. However, median concentrations of apelin were lower in sECAS [84.94 (46.88-130.41) ng/mL) than in sICAS [118.64 (93.22-145.08) ng/mL, P = 0.002] and NCAS [114.38 (80.56-162.93) ng/mL, P = 0.004]. Logistic regression analysis showed that the lowermost tertile of apelin was independently associated with sECAS (OR, 5.121; 95% CI, 1.597-16.426) when adjusted for risk factors. As for sICAS patients, spearman coefficient analysis showed no significant correlation between these four adipokines and the severity of sICAS or the number of vessels with intracranial stenoses. Patients with severe stroke had lower levels of apelin (P = 0.005), while the other three adipokines showed no such difference. During follow up, no difference was found between these four novel adipokines and short- and long-term outcome of sICAS. Conclusions: Lower levels of omentin are independent biomarkers of LAA while low apelin plasma levels seem to be risk factors of sECAS.


Memory matters in dementia: Efficacy of a mobile reminiscing therapy app.

  • Fang Yu‎ et al.
  • Alzheimer's & dementia (New York, N. Y.)‎
  • 2019‎

Reminiscence therapy has been shown to improve mental health and quality of life in dementia; however, reminiscence therapy is often delivered by therapists instead of being technology-enabled. This study evaluated the preliminary efficacy of Memory Matters (MM), an iPad reminiscence game on mood, social interaction, quality of life, and behavioral and psychological symptoms of dementia.


SPSB2 inhibits hepatitis C virus replication by targeting NS5A for ubiquitination and degradation.

  • Mingzhen Wang‎ et al.
  • PloS one‎
  • 2019‎

Hepatitis C virus (HCV) replication involves many viral and host factors. Host factor SPRY domain- and SOCS box-containing protein 2(SPSB2) belongs to SPSB family, and it recruits target proteins by the SPRY domain and forms E3 ubiquitin ligase complexes by the SOCS box. As an adaptor protein, it can regulate the host's response to infection, but little is known about whether SPSB2 plays a role in HCV replication. In the present study, we found that HCV infection significantly upregulated the mRNA and protein levels of SPSB2 in HCVcc-infected cells. Exogenous expression of SPSB2 in hepatoma cells decreased HCV RNA and protein levels which depended on the SOCS box, while knockdown of endogenous SPSB2 increased HCV RNA and protein levels. Additionally, we demonstrated that SPSB2 interacted with HCV structural protein E1 and nonstructural protein protein 5A (NS5A) via the C-terminal portion of the SPSB2 SPRY domain. Furthermore, SPSB2 induced NS5A ubiquitination and mediated NS5A degradation. Collectively, this study discovered host factor SPSB2 significantly inhibits HCV replication by interacting and degrading NS5A.


MUC1 oncoprotein mitigates ER stress via CDA-mediated reprogramming of pyrimidine metabolism.

  • Appolinaire A Olou‎ et al.
  • Oncogene‎
  • 2020‎

The Mucin 1 (MUC1) protein is overexpressed in various cancers and mediates chemotherapy resistance. However, the mechanism is not fully understood. Given that most chemotherapeutic drugs disrupt ER homeostasis as part of their toxicity, and MUC1 expression is regulated by proteins involved in ER homeostasis, we investigated the link between MUC1 and ER homeostasis. MUC1 knockdown in pancreatic cancer cells enhanced unfolded protein response (UPR) signaling and cell death upon ER stress induction. Transcriptomic analysis revealed alterations in the pyrimidine metabolic pathway and cytidine deaminase (CDA). ChIP and CDA activity assays showed that MUC1 occupied CDA gene promoter upon ER stress induction correlating with increased CDA expression and activity in MUC1-expressing cells as compared with MUC1 knockdown cells. Inhibition of either the CDA or pyrimidine metabolic pathway diminished survival in MUC1-expressing cancer cells upon ER stress induction. Metabolomic analysis demonstrated that MUC1-mediated CDA activity corresponded to deoxycytidine to deoxyuridine metabolic reprogramming upon ER stress induction. The resulting increase in deoxyuridine mitigated ER stress-induced cytotoxicity. In addition, given (1) the established roles of MUC1 in protecting cells against reactive oxygen species (ROS) insults, (2) ER stress-generated ROS further promote ER stress and (3) the emerging anti-oxidant property of deoxyuridine, we further investigated if MUC1 regulated ER stress by a deoxyuridine-mediated modulation of ROS levels. We observed that deoxyuridine could abrogate ROS-induced ER stress to promote cancer cell survival. Taken together, our findings demonstrate a novel MUC1-CDA axis of the adaptive UPR that provides survival advantage upon ER stress induction.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: