Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 2,494 papers

Inhibitory effects of morinda officinalis extract on bone loss in ovariectomized rats.

  • Nan Li‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2009‎

The present study was undertaken to investigate the protective effects of ethanol extract from the root of Morinda Officinalis (RMO) on ovariectomy-induced bone loss. Administration of RMO extract increased trabecular bone mineral content and bone mineral density of tibia, improved the levels of phosphorus (P), calcium (Ca) and OPG, decreased the levels of DPD/Cr, TRAP, ACTH and corticosterone, but did not reverse the levels of ALP, TNF-alpha and IL-6 in serum of ovariectomized rats. These findings demonstrated that RMO extract reduced bone loss in ovariectomized rats, probably via the inhibition of bone resorption, but was not involved with bone formation. Anthraquinones and polysaccharides from Morinda officinals could be responsible for their antiosteoporotic activity, and the action mechanism of these constituents needs to be further studied. Therefore, RMO has the potential to develop a clinically useful antiosteoporotic agent.


Altered expression of signaling genes in Jurkat cells upon FTY720 induced apoptosis.

  • Fang Wang‎ et al.
  • International journal of molecular sciences‎
  • 2010‎

FTY720, a novel immunosuppressant, has a marked activity in decreasing peripheral blood T lymphocytes upon oral administration. Recent investigations suggest that the action of FTY720 on lymphocytes may result from its ability to induce cell apoptosis. However, the cell signaling mechanism involved in the FTY720-induced cell apoptosis remains unclear. Here we examined the apoptotic signal pathways mediated by FTY720 in Jurkat cells using microarray analysis. The results showed that FTY720 can induce Jurkat cell apoptosis in a dose and time dependent manner as assessed by cell viability, Hoechst 33258 staining, Annexin V binding and DNA fragmentation tests. cDNA microarray analysis showed that 10 μM of FTY720 up-regulated 54 and down-regulated 10 genes in Jurkat cells among the 458 apoptotic genes examined following the 6 h incubation period. At least five-fold increased expression of modulator of apoptosis-1 (MOAP-1), vascular endothelial growth factor (VEGF), tumor necrosis factor receptor-associated factors (TRAF 6), Caspase 2 (CASP 2), E2F transcription factor 1 (E2F 1) and Casapse 5 (CASP 5) genes was observed in microarray analyses; these results were confirmed with reverse transcription polymerase chain reaction (RT-PCR) examination. Our findings suggest that the mitochondria related signaling pathways are the key pathways involved in the FTY720-induced apoptosis in Jurkat cells. And our results provide a new insight into the mechanism of FTY720, which allows us to draw the first simple diagram showing the potential pathways mediated by FTY720.


Implication of genetic variants near SLC30A8, HHEX, CDKAL1, CDKN2A/B, IGF2BP2, FTO, TCF2, KCNQ1, and WFS1 in type 2 diabetes in a Chinese population.

  • Xueyao Han‎ et al.
  • BMC medical genetics‎
  • 2010‎

Recently, several genome-wide and candidate gene association studies have identified many novel genetic loci for type 2 diabetes (T2D); among these genes, CDKAL1, IGF2BP2, SLC30A8, CDKN2A/B, HHEX, FTO, TCF2, KCNQ1, and WFS1 are the most important. We aimed to determine the effects of these genetic loci associated with T2D in the Chinese Han population of China.


Severity of diabetes governs vascular lipoprotein lipase by affecting enzyme dimerization and disassembly.

  • Ying Wang‎ et al.
  • Diabetes‎
  • 2011‎

In diabetes, when glucose consumption is restricted, the heart adapts to use fatty acid (FA) exclusively. The majority of FA provided to the heart comes from the breakdown of circulating triglyceride (TG), a process catalyzed by lipoprotein lipase (LPL) located at the vascular lumen. The objective of the current study was to determine the mechanisms behind LPL processing and breakdown after moderate and severe diabetes.


Evidence that the Amyloid beta Precursor Protein-intracellular domain lowers the stress threshold of neurons and has a "regulated" transcriptional role.

  • Luca Giliberto‎ et al.
  • Molecular neurodegeneration‎
  • 2008‎

Regulated intramembrane proteolysis of the beta-amyloid precursor protein by the gamma-secretase yields two peptides. One, amyloid-beta, is the major component of the amyloid plaques found in Alzheimer's disease patients. The other, APP IntraCellular Domain, has been involved in regulation of apoptosis, calcium flux and gene transcription. To date, a few potential target genes transcriptionally controlled by AID, alone or complexed with Fe65/Tip60, have been described. Although the reports are controversial: these include KAI1, Neprilysin, p53, EGFR, LRP and APP itself. Furthermore, p53 has been implicated in AID mediated susceptibility to apoptosis. To extend these findings, and assess their in vivo relevance, we have analyzed the expression of the putative target genes and of the total brain basal transriptoma in transgenic mice expressing AID in the forebrain. Also, we have studied the susceptibility of primary neurons from such mice to stress and pro-apoptotic agents.


QDMR: a quantitative method for identification of differentially methylated regions by entropy.

  • Yan Zhang‎ et al.
  • Nucleic acids research‎
  • 2011‎

DNA methylation plays critical roles in transcriptional regulation and chromatin remodeling. Differentially methylated regions (DMRs) have important implications for development, aging and diseases. Therefore, genome-wide mapping of DMRs across various temporal and spatial methylomes is important in revealing the impact of epigenetic modifications on heritable phenotypic variation. We present a quantitative approach, quantitative differentially methylated regions (QDMRs), to quantify methylation difference and identify DMRs from genome-wide methylation profiles by adapting Shannon entropy. QDMR was applied to synthetic methylation patterns and methylation profiles detected by methylated DNA immunoprecipitation microarray (MeDIP-chip) in human tissues/cells. This approach can give a reasonable quantitative measure of methylation difference across multiple samples. Then DMR threshold was determined from methylation probability model. Using this threshold, QDMR identified 10,651 tissue DMRs which are related to the genes enriched for cell differentiation, including 4740 DMRs not identified by the method developed by Rakyan et al. QDMR can also measure the sample specificity of each DMR. Finally, the application to methylation profiles detected by reduced representation bisulphite sequencing (RRBS) in mouse showed the platform-free and species-free nature of QDMR. This approach provides an effective tool for the high-throughput identification of potential functional regions involved in epigenetic regulation.


CD74 interacts with APP and suppresses the production of Abeta.

  • Shuji Matsuda‎ et al.
  • Molecular neurodegeneration‎
  • 2009‎

Alzheimer disease (AD) is characterized by senile plaques, which are mainly composed of beta amyloid (Abeta) peptides. Abeta is cleaved off from amyloid precursor protein (APP) with consecutive proteolytic processing by beta-secretase and gamma-secretase.


Maturation of BRI2 generates a specific inhibitor that reduces APP processing at the plasma membrane and in endocytic vesicles.

  • Shuji Matsuda‎ et al.
  • Neurobiology of aging‎
  • 2011‎

Processing of the amyloid-β (Aβ) precursor protein (APP) has been extensively studied since it leads to production of Aβ peptides. Toxic forms of Aβ aggregates are considered the cause of Alzheimer's disease (AD). On the other end, BRI2 is implicated in APP processing and Aβ production. We have investigated the precise mechanism by which BRI2 modulates APP cleavages and have found that BRI2 forms a mature BRI2 polypeptide that is transported to the plasma membrane and endosomes where it interacts with mature APP. Notably, immature forms of APP and BRI2 fail to interact. Mature BRI2 inhibits APP processing by α-, β- and γ-secretases on the plasma membrane and in endocytic compartments. Thus, BRI2 is a specific inhibitor that reduces secretases' access to APP in the intracellular compartments where APP is normally processed.


Transgenic expression of the amyloid-beta precursor protein-intracellular domain does not induce Alzheimer's Disease-like traits in vivo.

  • Luca Giliberto‎ et al.
  • PloS one‎
  • 2010‎

Regulated intramembranous proteolysis of the amyloid-beta precursor protein by the gamma-secretase yields amyloid-beta, which is the major component of the amyloid plaques found in Alzheimer's disease (AD), and the APP intracellular domain (AID). In vitro studies have involved AID in apoptosis and gene transcription. In vivo studies, which utilize transgenic mice expressing AID in the forebrain, only support a role for AID in apoptosis but not gene transcription.


Rampant historical mitochondrial genome introgression between two species of green pond frogs, Pelophylax nigromaculatus and P. plancyi.

  • Kui Liu‎ et al.
  • BMC evolutionary biology‎
  • 2010‎

Mitochondrial introgression may result in the mitochondrial genome of one species being replaced by that of another species without leaving any trace of past hybridization in its nuclear genome. Such introgression can confuse the species genealogy estimates and lead to absurd inferences of species history. We used a phylogenetic approach to explore the potential mitochondrial genome introgression event(s) between two closely related green pond frog species, Pelophylax nigromaculatus and P. plancyi.


Molecular characterization of a Fus3/Kss1 type MAPK from Puccinia striiformis f. sp. tritici, PsMAPK1.

  • Jun Guo‎ et al.
  • PloS one‎
  • 2011‎

Puccinia striiformis f. sp. tritici (Pst) is an obligate biotrophic fungus that causes the destructive wheat stripe rust disease worldwide. Due to the lack of reliable transformation and gene disruption method, knowledge about the function of Pst genes involved in pathogenesis is limited. Mitogen-activated protein kinase (MAPK) genes have been shown in a number of plant pathogenic fungi to play critical roles in regulating various infection processes. In the present study, we identified and characterized the first MAPK gene PsMAPK1 in Pst. Phylogenetic analysis indicated that PsMAPK1 is a YERK1 MAP kinase belonging to the Fus3/Kss1 class. Single nucleotide polymerphisms (SNPs) and insertion/deletion were detected in the coding region of PsMAPK1 among six Pst isolates. Real-time RT-PCR analyses revealed that PsMAPK1 expression was induced at early infection stages and peaked during haustorium formation. When expressed in Fusarium graminearum, PsMAPK1 partially rescued the map1 mutant in vegetative growth and pathogenicity. It also partially complemented the defects of the Magnaporthe oryzae pmk1 mutant in appressorium formation and plant infection. These results suggest that F. graminearum and M. oryzae can be used as surrogate systems for functional analysis of well-conserved Pst genes and PsMAPK1 may play a role in the regulation of plant penetration and infectious growth in Pst.


Long-term acarbose administration alleviating the impairment of spatial learning and memory in the SAMP8 mice was associated with alleviated reduction of insulin system and acetylated H4K8.

  • Wen-Wen Yan‎ et al.
  • Brain research‎
  • 2015‎

Age-associated memory impairment (AAMI) not only reduces the quality of life for the elderly but also increases the costs of healthcare for society. Methods that can regulate glucose metabolism, insulin/insulin-like growth factor 1 (IGF-1) system and acetylated histone H4 lysine 8 (H4K8ac), one of the most well-researched facets of histone acetylation modification associating with cognition, tend to ameliorate the AAMI. Here, we used SAMP8 mice, the excellent animal model of aging and AAMI, to study the effect of long-term treatment with acarbose, an inhibitor of a-glucosidase, on AAMI and explore whether blood glucose, insulin/IGF-1 system and H4K8ac are associated with potential effects. The treatment group received acarbose (20mg/kg/d, dissolved in drinking water) at the age of 3-month until 9-month old before the behavioral test, and the controls only received water. Compared to the young controls (3-month-old, n=11), the old group (9-month-old, n=8) had declined abilities of spatial learning and memory and levels of serum insulin, hippocampal insulin receptors (InsRs) and H4K8ac. Interestingly, the acarbose group (9-month-old, n=9) showed better abilities of spatial learning and memory and higher levels of insulin, InsRs and H4K8ac relative to the old controls. Good performance of spatial learning and memory was positively correlated with the elevated insulin, InsRs and H4K8ac. All these results suggested that long-term administration of acarbose could alleviate the age-related impairment of spatial learning and memory in the SAMP8 mice, and the alleviated reduction of an insulin system and H4K8ac might be associated with the alleviation.


A phylo-functional core of gut microbiota in healthy young Chinese cohorts across lifestyles, geography and ethnicities.

  • Jiachao Zhang‎ et al.
  • The ISME journal‎
  • 2015‎

Structural profiling of healthy human gut microbiota across heterogeneous populations is necessary for benchmarking and characterizing the potential ecosystem services provided by particular gut symbionts for maintaining the health of their hosts. Here we performed a large structural survey of fecal microbiota in 314 healthy young adults, covering 20 rural and urban cohorts from 7 ethnic groups living in 9 provinces throughout China. Canonical analysis of unweighted UniFrac principal coordinates clustered the subjects mainly by their ethnicities/geography and less so by lifestyles. Nine predominant genera, all of which are known to contain short-chain fatty acid producers, co-occurred in all individuals and collectively represented nearly half of the total sequences. Interestingly, species-level compositional profiles within these nine genera still discriminated the subjects according to their ethnicities/geography and lifestyles. Therefore, a phylogenetically diverse core of gut microbiota at the genus level may be commonly shared by distinctive healthy populations as functionally indispensable ecosystem service providers for the hosts.


A common variant near TGFBR3 is associated with primary open angle glaucoma.

  • Zheng Li‎ et al.
  • Human molecular genetics‎
  • 2015‎

Primary open angle glaucoma (POAG), a major cause of blindness worldwide, is a complex disease with a significant genetic contribution. We performed Exome Array (Illumina) analysis on 3504 POAG cases and 9746 controls with replication of the most significant findings in 9173 POAG cases and 26 780 controls across 18 collections of Asian, African and European descent. Apart from confirming strong evidence of association at CDKN2B-AS1 (rs2157719 [G], odds ratio [OR] = 0.71, P = 2.81 × 10(-33)), we observed one SNP showing significant association to POAG (CDC7-TGFBR3 rs1192415, ORG-allele = 1.13, Pmeta = 1.60 × 10(-8)). This particular SNP has previously been shown to be strongly associated with optic disc area and vertical cup-to-disc ratio, which are regarded as glaucoma-related quantitative traits. Our study now extends this by directly implicating it in POAG disease pathogenesis.


Vasohibin-1 suppresses colon cancer.

  • Shuai Liu‎ et al.
  • Oncotarget‎
  • 2015‎

Vasohibin-1 (VASH1) is an endogenous angiogenesis inhibitor.However, the clinical relevance of VASH1 in colon cancer and its regulations on cancer angiogenesis and cancer cell biological characteristics are still unknown. Here we showed that stromal VASH1 levels were negatively correlated with tumor size, advanced clinical stage and distant metastases in colon cancer patients. Overexpression of VASH1 in colon cancer cells induced apoptosis and senescence, inhibiting cancer cell growth and colony formation in vitro and tumor growth in vivo. In addition, knockdown of VASH1 in cancer cells promoted cell growth, adhesion and migration in vitro, and enhanced tumorigenesis and metastasis in vivo.


Analysis of CD8+ Treg cells in patients with ovarian cancer: a possible mechanism for immune impairment.

  • Shuping Zhang‎ et al.
  • Cellular & molecular immunology‎
  • 2015‎

Regulatory T (Treg) cells may participate in mediating a suppressive microenvironment that blunts successful anti-tumor immunotherapy. Recent studies show that CD8(+) Treg cells might impede effective immune responses to established tumors. However, there is limited research regarding CD8(+) Treg cells in ovarian cancer (OC) patients. Here, we investigated CD8(+) Treg cells in OC patients and their in vitro induction. The immunohistochemistry of tumor-infiltrating lymphocytes revealed a significant correlation between the intratumoral CD8(+) T cells and the forkhead box p3 (Foxp3)(+) cells in the intraepithelial and stromal areas of advanced OC tissues. We examined the expression of Treg markers in CD8(+) T cells from the peripheral blood and fresh tumor tissues of OC patients using flow cytometry. Our results indicated an increase in the CD8(+) Treg cell subsets of OC patients compared with those in patients with benign ovarian tumors and healthy controls, including an increased expression of CD25, cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), and Foxp3 and decreased CD28 expression. To demonstrate whether the tumor microenvironment could convert CD8(+) effector T cells into suppressor cells, we used an in vitro transwell culturing system. Compared with the CD8(+) T cells cultured alone, the CD8(+) Treg cells induced in vitro by coculture with SK-OV-3/A2780 showed increased CTLA-4 and Foxp3 expression and decreased CD28 expression. In addition, the in vitro-induced CD8(+) Treg cells inhibited naı¨ve CD4(+) T-cell proliferation, which was partially mediated through TGF-β1 and IFN-γ. Our study suggests that CD8(+) Treg cells were increased in OC patients and could be induced in vitro, which may be the way that tumors limit antitumor immunity and evade immune surveillance.


Escherichia coli Maltose-Binding Protein Induces M1 Polarity of RAW264.7 Macrophage Cells via a TLR2- and TLR4-Dependent Manner.

  • Wan Wang‎ et al.
  • International journal of molecular sciences‎
  • 2015‎

Maltose-binding protein (MBP) is a critical player of the maltose/maltodextrin transport system in Escherichia coli. Our previous studies have revealed that MBP nonspecifically induces T helper type 1 (Th1) cell activation and activates peritoneal macrophages obtained from mouse. In the present study, we reported a direct stimulatory effect of MBP on RAW264.7 cells, a murine macrophage cell line. When stimulated with MBP, the production of nitric oxide (NO), IL-1β, IL-6 and IL-12p70, and the expressions of CD80, MHC class II and inducible nitric oxide synthase (iNOS) were all increased in RAW264.7 cells, indicating the activation and polarization of RAW264.7 cells into M1 macrophages induced by MBP. Further study showed that MBP stimulation upregulated the expression of TLR2 and TLR4 on RAW264.7 cells, which was accompanied by subsequent phosphorylation of IκB-α and p38 MAPK. Pretreatment with anti-TLR2 or anti-TLR4 antibodies largely inhibited the phosphorylation of IκB-α and p38 MAPK, and greatly reduced MBP-induced NO and IL-12p70 production, suggesting that the MBP-induced macrophage activation and polarization were mediated by TLR2 and TLR4 signaling pathways. The observed results were independent of lipopolysaccharide contamination. Our study provides a new insight into a mechanism by which MBP enhances immune responses and warrants the potential application of MBP as an immune adjuvant in immune therapies.


A Quantitative and Standardized Method for the Evaluation of Choroidal Neovascularization Using MICRON III Fluorescein Angiograms in Rats.

  • Jonathan P Wigg‎ et al.
  • PloS one‎
  • 2015‎

In-vivo imaging of choroidal neovascularization (CNV) has been increasingly recognized as a valuable tool in the investigation of age-related macular degeneration (AMD) in both clinical and basic research applications. Arguably the most widely utilised model replicating AMD is laser generated CNV by rupture of Bruch's membrane in rodents. Heretofore CNV evaluation via in-vivo imaging techniques has been hamstrung by a lack of appropriate rodent fundus camera and a non-standardised analysis method. The aim of this study was to establish a simple, quantifiable method of fluorescein fundus angiogram (FFA) image analysis for CNV lesions.


Afatinib circumvents multidrug resistance via dually inhibiting ATP binding cassette subfamily G member 2 in vitro and in vivo.

  • Xiao-Kun Wang‎ et al.
  • Oncotarget‎
  • 2014‎

Multidrug resistance (MDR) to chemotherapeutic drugs is a formidable barrier to the success of cancer chemotherapy. Expressions of ATP-binding cassette (ABC) transporters contribute to clinical MDR phenotype. In this study, we found that afatinib, a small molecule tyrosine kinase inhibitor (TKI) targeting EGFR, HER-2 and HER-4, reversed the chemoresistance mediated by ABCG2 in vitro, but had no effect on that mediated by multidrug resistance protein ABCB1 and ABCC1. In addition, afatinib, in combination with topotecan, significantly inhibited the growth of ABCG2- overexpressing cell xenograft tumors in vivo. Mechanistic investigations exhibited that afatinib significantly inhibited ATPase activity of ABCG2 and downregulated expression level of ABCG2, which resulted in the suppression of efflux activity of ABCG2 in parallel to the increase of intracellular accumulation of ABCG2 substrate anticancer agents. Taken together, our findings may provide a new and useful combinational therapeutic strategy of afatinib with chemotherapeutical drug for the patients with ABCG2 overexpressing cancer cells.


Genome organization and transcriptional regulation of Adenosine Deaminase Acting on RNA gene 1 (ADAR1) in grass carp (Ctenopharyngodon idella).

  • Zhicheng Sun‎ et al.
  • Developmental and comparative immunology‎
  • 2015‎

ADAR1, involved in A-to-I RNA editing, belongs to adenosine deaminase acting on RNA (ADAR) family. A-to-I RNA editing is the most widespread editing phenomenon in higher eukaryotes. In the present study, we cloned and identified the full-length cDNA, complete genomic sequence and the promoter sequence of grass carp (Ctenopharyngodon idella) ADAR1 (CiADAR1) by homology cloning strategy and genome walking. CiADAR1 full-length cDNA is comprised of a 5'UTR (43  bp), a 3'UTR (229 bp) and a 4179 bp ORF encoding a polypeptide of 1392 amino acids. The deduced amino acid sequence of CiADAR1 contains two Z-DNA binding domains, three dsRNA binding motifs and a conserved catalytic domain. The complete genomic CiADAR1 has 16 exons and 15 introns. Phylogenetic tree analysis revealed that CiADAR1 shared high homology with Danio rerio ADAR1 (DrADAR1). RT-PCR showed that CiADAR1 were ubiquitously expressed and significantly up-regulated after stimulation with poly I:C. In spleen and liver, CiADAR1 mRNA reached the peak at 12 h and maintained the highest level during 12-24 h post-injection. CiADAR1 promoter was found to be 1102 bp in length and divided into two distinct regions, the proximal region containing three putative interferon regulatory factor binding elements (IRF-E) and the distal region containing only one IRF-E. To further study the transcriptional regulatory mechanism of CiADAR1, grass carp IRF1 (CiIRF1) and IRF3 (CiIRF3) were expressed in Escherichia coli BL21 and purified by affinity chromatography with the Ni-NTA His-Bind resin. Then, gel mobility shift assay was employed to analyze the affinity of CiADAR1 promoter sequence with CiIRF1 and CiIRF3 in vitro. The result revealed that CiIRF1 and CiIRF3 bound to CiADAR1 promoter with high affinity, indicating that IRF1 and IRF3 could be the potential transcriptional regulatory factor for CiADAR1. Co-transfection of pcDNA3.1-IRF1 (or pcDNA3.1-IRF3) with pGL3-CiADAR1 into C. idella kidney (CIK) cells showed that both IRF1 and IRF3 played a positive role in CiADAR1 transcription. In addition, the mutant assay revealed that the proximal region of CiADAR1 promoter is the main regulatory region in CiADAR1 transcription.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: