Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 151 papers

Cobrotoxin from Naja naja atra Venom Ameliorates Adriamycin Nephropathy in Rats.

  • Shu-Zhi Wang‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2015‎

Chronic kidney disease (CKD) becomes a global health problem with high morbidity and mortality. Adriamycin- (ADR-) induced rodent chronic nephropathy is a classic experimental model of human minimal lesion nephrotic syndrome. The present study investigated the effect of cobrotoxin (CTX) on ADR-induced nephropathy. Rats were given 6 mg/kg ADR once through the tail vein to replicate ADR nephropathy model. CTX was administered to rats daily by placing a fast dissolving CTX membrane strip under the tongue starting from 5 days prior to ADR administration until the end of experiment. The results showed that CTX ameliorated the symptoms of ADR nephropathy syndrome with reduced body weight loss, proteinuria, hypoalbuminemia, dyslipidemia, serum electrolyte imbalance, oxidative stress, renal function abnormities, and kidney pathological lesions. Anti-inflammatory cytokine IL-10 expression was elevated after CTX administration in ADR nephropathy model. CTX inhibited the phosphorylation of IκB-α and NF-κB p65 nuclear translocation. Meanwhile, CTX upregulated the protein level of podocyte-specific nephrin and downregulated the level of fibrosis-related TGF-β. These findings suggest that CTX may be a potential drug for chronic kidney diseases.


Impact of Donation Mode on the Proportion and Function of T Lymphocytes in the Liver.

  • Emmanuel Xystrakis‎ et al.
  • PloS one‎
  • 2015‎

Liver T-cells respond to the inflammatory insult generated during organ procurement and contribute to the injury following reperfusion. The mode of liver donation alters various metabolic and inflammatory pathways but the way it affects intrahepatic T-cells is still unclear.


Chemopreventive activity of GEN-27, a genistein derivative, in colitis-associated cancer is mediated by p65-CDX2-β-catenin axis.

  • Qianming Du‎ et al.
  • Oncotarget‎
  • 2016‎

Nonresolving inflammation in the intestine predisposes individuals to colitis-associated colorectal cancer (CAC), which leads to high morbidity and mortality. Here we show that genistein-27 (GEN-27), a derivative of genistein, inhibited proliferation of human colorectal cancer cells through inhibiting β-catenin activity. Our results showed that GEN-27 increased expressions of adenomatous polyposis coli (APC) and axis inhibition protein 2 (AXIN2), and reduced β-catenin nuclear localization, which resulted from the inhibition of NF-κB/p65 nuclear localization and up-regulation of caudal-related homeobox transcription factor 2 (CDX2). Furthermore, GEN-27 decreased binding of p65 to the silencer region of CDX2 and increased binding of CDX2 to the promoter regions of APC and AXIN2, thus inhibiting the activation of β-catenin induced by TNF-α. Importantly, GEN-27 protected mice from azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced colon carcinogenesis, with reduced mortality, tumor number and tumor volume. Histopathology, immunohistochemistry and flow cytometry revealed that dietary GEN-27 significantly decreased secretion of proinflammatory cytokines and macrophage infiltration. Moreover, GEN-27 inhibited AOM/DSS-induced p65 and β-catenin nuclear translocation, while promoted the expression of CDX2, APC, and AXIN2. Taken together, our findings demonstrate that the anti-proliferation effect of GEN-27 in vitro and the prevention of CAC in vivo is mediated by p65-CDX2-β-catenin axis via inhibiting β-catenin target genes. Our results imply that GEN-27 could be a promising candidate for the chemoprevention of CAC.


Inflammasome-independent NLRP3 is required for epithelial-mesenchymal transition in colon cancer cells.

  • Hong Wang‎ et al.
  • Experimental cell research‎
  • 2016‎

Inflammasome NLRP3 plays a crucial role in the process of colitis and colitis--associated colon cancer. Even though much is known regarding the NLRP3 inflammasome that regulates pro-inflammatory cytokine release in innate immune cells, the role of NLRP3 in non-immune cells is still unclear. In this study, we showed that NLRP3 was highly expressed in mesenchymal-like colon cancer cells (SW620), and was upregulated by tumor necrosis factors-α (TNF-α) and transforming growth factor-β1 (TGF-β1) respectively, during EMT in colon cancer epithelial cells HCT116 and HT29. Knockdown of NLRP3 retained epithelial spindle-like morphology of HCT116 and HT29 cells and reversed the mesenchymal characteristic of SW620 cells, indicated by the decreased expression of vimentin and MMP9 and increased expression of E-cadherin. In addition, knockdown of NLRP3 in colorectal carcinoma cells displayed diminished cell migration and invasion. Interestingly, during the EMT process induced by TNF-α or TGF-β1, the cleaved caspase-1 and ASC speck were not detected, indicating that NLRP3 functions in an inflammasome-independent way. Further studies demonstrated that NLRP3 protein expression was regulated by NF-κB signaling in TNF-α or TGF-β1-induced EMT, as verified by the NF-κB inhibitor Bay 11-7082. Moreover, NLRP3 knockdown reduced the expression of Snail1, indicating that NLRP3 may promote EMT through regulating Snail1. In summary, our results showed that the NLRP3 expression, not the inflammasome activation, was required for EMT in colorectal cancer cells.


Adoptive transfer of induced-Treg cells effectively attenuates murine airway allergic inflammation.

  • Wei Xu‎ et al.
  • PloS one‎
  • 2012‎

Both nature and induced regulatory T (Treg) lymphocytes are potent regulators of autoimmune and allergic disorders. Defects in endogenous Treg cells have been reported in patients with allergic asthma, suggesting that disrupted Treg cell-mediated immunological regulation may play an important role in airway allergic inflammation. In order to determine whether adoptive transfer of induced Treg cells generated in vitro can be used as an effective therapeutic approach to suppress airway allergic inflammation, exogenously induced Treg cells were infused into ovalbumin-sensitized mice prior to or during intranasal ovalbumin challenge. The results showed that adoptive transfer of induced Treg cells prior to allergen challenge markedly reduced airway hyperresponsiveness, eosinophil recruitment, mucus hyper-production, airway remodeling, and IgE levels. This effect was associated with increase of Treg cells (CD4(+)FoxP3(+)) and decrease of dendritic cells in the draining lymph nodes, and with reduction of Th1, Th2, and Th17 cell response as compared to the controls. Moreover, adoptive transfer of induced Treg cells during allergen challenge also effectively attenuate airway inflammation and improve airway function, which are comparable to those by natural Treg cell infusion. Therefore, adoptive transfer of in vitro induced Treg cells may be a promising therapeutic approach to prevent and treat severe asthma.


Crystallization and crystallographic studies of kallistatin.

  • Fang Lin‎ et al.
  • Acta crystallographica. Section F, Structural biology communications‎
  • 2015‎

Kallistatin is a serine protease inhibitor (serpin) which specifically inhibits human tissue kallikrein; however, its inhibitory activity is inhibited by heparin. In order to elucidate the underlying mechanism, recombinant human kallistatin was prepared in Escherichia coli and the protein was crystallized by the sitting-drop vapour-diffusion method. X-ray diffraction data were collected to 1.9 Å resolution. The crystals were found to belong to space group P61, with unit-cell parameters a = 113.51, b = 113.51, c = 76.17 Å. Initial analysis indicated that the crystallized kallistatin was in a relaxed conformation, with its reactive-centre loop inserted in the central β-sheet.


Study on the incidence and risk factor of silent cerebrovascular disease in young adults with first-ever stroke.

  • Huimin Fan‎ et al.
  • Medicine‎
  • 2018‎

Silent cerebrovascular diseases, including silent brain infarcts (SBI), white matter hyperintensity (WMH), and cerebral microbleed, are closely correlated with stroke progression. The purpose of this study was to investigate the prevalence and potential risk factors of SBI and WMH in young patients with first-ever stroke.A total of 400 young patients with first-ever stroke were included in this study and received magnetic resonance imaging test. The distributions of stroke subtypes were analyzed based on patients' age and gender. The prevalence of SBI and WMH was evaluated in different age groups and stroke subtypes. Independent risk factors for SBI and WMH were identified using logistic regression analysis.The distribution of stroke subtypes was not correlated with patients' age or gender in our study. The incidence of SBI and WMH among all of the young stroke patients was 14.50% and 8.75%, respectively, which showed an upward tendency with age. The percentages of both SBI and WMH were significantly higher in small-vessel disease patients than in cases with other subtype diseases (all P < .05). Hypertension (odds ratio [OR] = 2.645, 95% confidence interval [CI] = 1.429-4.896, P = .002 for SBI; OR = 5.474, 95% CI = 2.319-12.921, P = .000 for WMH; OR = 39.988, 95% CI = 3.988-400.949, P = .002 for SBI and WMH) and homocysteine (OR = 4.033, 95% CI = 2.191-7.425, P = .000 for SBI; OR = 5.989, 95% CI = 2.637-13.602, P = .000 for WMH; OR = 4.068, 95% CI = 1.207-13.715, P = .024 for SBI and WMH) might be potential risk factors for SBI and WMH.The prevalence of silent cerebrovascular disease was elevated with age. Hypertension and elevated homocysteine levels were 2 risk factors for silent cerebrovascular disease in young stroke patients.


miR-423-5p serves as a diagnostic indicator and inhibits the proliferation and invasion of ovarian cancer.

  • Xuebiao Tang‎ et al.
  • Experimental and therapeutic medicine‎
  • 2018‎

MicroRNA (miR)-423-5p is a potential target for the diagnosis and therapy of heart failure and cancer. The present study aimed to investigate the expression and role of miR-423-5p in ovarian cancer. miR-423-5p expression in ovarian tissues and plasma collected from ovarian cancer patients and healthy volunteers was analyzed by polymerase chain reaction analysis. In addition, a cell proliferation assay, clonogenic assay and Matrigel-based assay were performed to evaluate the role of miR-423-5p in ovarian cancer cells. The results demonstrated that miR-423-5p was downregulated in ovarian cancer tissues and plasma from ovarian cancer patients, compared with healthy individuals. Of note, miR-423-5p expression in ovarian tissues and plasma was demonstrated to be inversely correlated with ovarian cancer progression. Transfection with miR-423-5p efficiently increased miR-423-5p expression in A2780-s and A2780-cp cells, which had low miR-423-5p expression. Ectopic overexpression of miR-423-5p reduced cell proliferation, colony formation and invasion of ovarian cancer cells. In conclusion, the present study indicated that miR-423-5p may serve as a diagnostic indicator and functions as a tumor suppressor in ovarian cancer.


Neonatal Heart-Enriched miR-708 Promotes Proliferation and Stress Resistance of Cardiomyocytes in Rodents.

  • Shengqiong Deng‎ et al.
  • Theranostics‎
  • 2017‎

Adult heart has limited potential for regeneration after pathological injury due to the limited cell proliferation of cardiomyocytes and the quiescent status of progenitor cells. As such, induction of cell-cycle reentry of cardiomyocytes is one of the key strategies for regeneration of damaged heart. In this study, a subset of miRNAs including miR-708 were identified to be much more abundant in the embryonic and neonatal cardiomyocytes than that in adult rodents. Overexpression of miR-708 promoted cellular proliferation of H9C2 cells or primary cardiomyocytes from neonatal rats or mice in vitro. Lipid nanoparticle delivery of miR-708 promoted myocardial regeneration and heart function recovery in vivo. In addition, miR-708 protected cardiomyocytes against stress-induced apoptosis under hypoxia or isoproterenol treatments. miR-708 inhibited the expression of MAPK14, which has been demonstrated arresting the cell cycle in cardiomyocytes. The cell proliferation-promoting function of miR-708 was dependent at least partly on the expression of MAPK14. These findings strengthen the potential of applying miRNAs to reconstitute lost cardiomyocytes in injured hearts, and may provide a novel miRNA candidate for promoting heart regeneration.


Enhanced expression and phosphorylation of Sirt7 activates smad2 and ERK signaling and promotes the cardiac fibrosis differentiation upon angiotensin-II stimulation.

  • Haichen Wang‎ et al.
  • PloS one‎
  • 2017‎

Cardiac fibroblasts (CFs) phenotypic conversion to myofibroblasts (MFs) represents a crucial event in cardiac fibrosis that leads to impaired cardiac function. However, regulation of this phenotypic transformation remains unclear. Here, we showed that sirtuin-7 (Sirt7) plays an important role in the regulation of MFs differentiation. Sirt7 expression and phosphorylation were upregulated in CFs upon angiotensin-II (Ang-II) stimulation. Sirt7 depletion by siRNA in CFs resulted in decreased cell proliferation and extracellular matrix (ECM) deposition. Further, examination of Sirt7-depleted CFs demonstrated significantly lower expression of α-smooth muscle actin (α-SMA), the classical marker of MFs differentiation, and decreased formation of focal adhesions. Moreover, overexpression of Sirt7 increased α-SMA expression in Ang-II treated CFs and exacerbated Ang-II-induced MFs differentiation. Moreover, Sirt7 depletion could largely reverse Ang-II induced increase of nuclear translocalization and activity of smad2 and extracellular regulated kinases (ERK) in CFs. Importantly, the increased differentiation of CFs to MFs was also abolished by smad2 siRNA or U0126. Our findings reveal a novel role of Sirt7 and its phosphorylation in the phenotypic conversion of CFs to MFs and might lead to the development of new therapeutic and prognostic tools for cardiac fibrosis.


Experimental Studies on the Differentiation of Fibroblasts into Myoblasts induced by MyoD Genes in vitro.

  • Zhongmin Liu‎ et al.
  • International journal of biomedical science : IJBS‎
  • 2008‎

To evaluate the biological functions of myogenic regulatory factors, we have examined the effects of ectopic expression of MyoD and Cx43 genes in the fibroblasts on the differentiation of myoblast in vitro. The expression of MyoD and Cx43 in the transfectants was confirmed by RT-PCR and Western blot. More than 50% of fibroblasts transfected with MyoD or both MyoD and Cx43 genes displayed typical morphological features of myoblast-like cells at 20 days following gene transfection, including cell elongation, cytoplasm enrichment and granule manifold. Moreover, these myoblast-like cells also expressed both desmin and α-actin. These results demonstrate that direct exogenous expression of the myogenic regulatory factors is sufficient to induce transdifferentiation of fibroblasts into a myoblast-like lineage and provide new insights into the trauma repair after myocardial infraction.


Human IgG subclasses against enterovirus Type 71: neutralization versus antibody dependent enhancement of infection.

  • Rui-Yuan Cao‎ et al.
  • PloS one‎
  • 2013‎

The emerging human enterovirus 71 (EV71) represents a growing threat to public health, and no vaccine or specific antiviral is currently available. Human intravenous immunoglobulin (IVIG) is clinical used in treating severe EV71 infections. However, the discovery of antibody dependent enhancement (ADE) of EV71 infection illustrates the complex roles of antibody in controlling EV71 infection. In this study, to identify the distinct role of each IgG subclass on neutralization and enhancement of EV71 infection, different lots of pharmaceutical IVIG preparations manufactured from Chinese donors were used for IgG subclass fractionation by pH gradient elution with the protein A-conjugated affinity column. The neutralization and ADE capacities on EV71 infection of each purified IgG subclass were then assayed, respectively. The neutralizing activity of human IVIG is mainly mediated by IgG1 subclass and to less extent by IgG2 subclass. Interestingly, IgG3 fraction did not have neutralizing activity but enhanced EV71 infection in vitro. These results revealed the different roles of human IgG subclasses on EV71 infection, which is of critical importance for the rational design of immunotherapy and vaccines against severe EV71 diseases.


p38(MAPK)/p53-Mediated Bax induction contributes to neurons degeneration in rotenone-induced cellular and rat models of Parkinson's disease.

  • Feng Wu‎ et al.
  • Neurochemistry international‎
  • 2013‎

Rotenone is an environmental neurotoxin that induces degeneration of dopaminergic (DA) neurons in substantia nigra pars compacta (SNpc), which ultimately results in parkinsonism, but the molecular mechanisms of selective degeneration of nigral DA neurons are not fully understood. In the present study, we investigated the induction of p38(MAPK)/p53 and Bax in SNpc of Lewis rats after chronic treatment with rotenone and the contribution of Bax to rotenone-induced apoptotic commitment of differentiated PC12 cells. Lewis rats were subcutaneously treated with rotenone (1.5mg/kg) twice a day for 50days and the loss of tyrosine hydroxylase (THase), motor function impairment, and expression of p38(MAPK), P-p38(MAPK), p53, and Bax were assessed. After differentiated PC cells were treated with rotenone (500nM) for 6-36h, protein levels of p38(MAPK) and P-p38(MAPK), p53 nuclear translocation, Bax induction and cell death were measured. The results showed that rotenone administration significantly reduced motor activity and caused a loss of THase immunoreactivity in SNpc of Lewis rats. The degeneration of nigral DA neurons was accompanied by the increases in p38(MAPK), P-p38(MAPK), p53, and Bax protein levels. In cultured PC12 cells, rotenone also induced an upregulation of p38(MAPK), P-p38(MAPK), p53 and Bax. Pharmacological inhibition of p38(MAPK) with SB203580 (25μM) blunted rotenone-induced cell apoptosis. Treatment with SB203580 prevented the p53 nuclear translocation and upregulation of Bax. Inhibition of p53 with pifthrin-alpha or Bax with siRNAs significantly reduced rotenone-induced Bax induction and apoptotic cell death. These results suggest that the p38(MAPK)/p53-dependent induction of Bax contributes to rotenone's neurotoxicity in PD models.


Essential roles of G{alpha}12/13 signaling in distinct cell behaviors driving zebrafish convergence and extension gastrulation movements.

  • Fang Lin‎ et al.
  • The Journal of cell biology‎
  • 2005‎

Galpha(12/13) have been implicated in numerous cellular processes, however, their roles in vertebrate gastrulation are largely unknown. Here, we show that during zebrafish gastrulation, suppression of both Galpha(12) and Galpha(13) signaling by overexpressing dominant negative proteins and application of antisense morpholino-modified oligonucleotide translation interference disrupted convergence and extension without changing embryonic patterning. Analyses of mesodermal cell behaviors revealed that Galpha(12/13) are required for cell elongation and efficient dorsalward migration during convergence independent of noncanonical Wnt signaling. Furthermore, Galpha(12/13) function cell-autonomously to mediate mediolateral cell elongation underlying intercalation during notochord extension, likely acting in parallel to noncanonical Wnt signaling. These findings provide the first evidence that Galpha(12) and Galpha(13) have overlapping and essential roles in distinct cell behaviors that drive vertebrate gastrulation.


Lpar2b Controls Lateral Line Tissue Size by Regulating Yap1 Activity in Zebrafish.

  • Xueqian Wang‎ et al.
  • Frontiers in molecular neuroscience‎
  • 2018‎

LPA signaling plays important roles during cell migration and proliferation in normal and pathological conditions. However, its role during sensory organ development remains unknown. Here we show a LPA receptor Lpar2b is expressed in the posterior lateral line primordium (pLLP) and mechanosensory organs called neuromasts (NMs) in zebrafish embryos. Lpar2b loss-of-function significantly reduces the number of NMs and hair cells in the posterior lateral line (pLL). Further analysis reveals that Lpar2b regulates the patterning and tissue size of the pLLP. Interestingly, we show that knocking down a Hippo effector Yap1 phenocopies the result of Lpar2b depletion, and Lpar2b regulates the phosphorylation and activity of Yap1 in the pLLP. Importantly, a phosphorylation-resistant Yap1 rescues pLLP size and NM number in Lpar2b-depleted embryos. Our results indicate Lpar2b controls primordium size and NM number by regulating Yap1 activity in the lateral line system.


DC - SIGNR by influencing the lncRNA HNRNPKP2 upregulates the expression of CXCR4 in gastric cancer liver metastasis.

  • Yu Zhang‎ et al.
  • Molecular cancer‎
  • 2017‎

Profiling evidences of selectin demonstrate that they play an crucial role in cancer progression and metastasis. However, DC-SIGNR as a family member of selectin participates in gastric cancer liver metastasis remains unknown.


AFC1 Compound Attenuated MI/R-Induced Ventricular Remodeling via Inhibiting PDGFR and STAT Pathway.

  • Jie Liu‎ et al.
  • Frontiers in pharmacology‎
  • 2019‎

Background: Effective interventions to improve the outcome of patients subjected to myocardial ischemia reperfusion (MI/R) are urgent in clinical settings. Tanshinone IIA (TSA) is reported to attenuate myocardial injury and improve ventricular remodeling post MI/R. Here, we evaluated the efficacy of AFC1 compound that is similar to TSA structure in murine MI/R models. We found that AFC1 had a comparable effect of improving murine cardiac function after MI/R while it was superior to TSA in safety profile. Administration of AFC1 reduced reactive oxygen species (ROS) production, inflammatory cells infiltration, and the expression of platelet derived growth factor receptors (PDGFR) in infarcted myocardium. Treatment with AFC1 also attenuated MI/R-induced cardiac remodeling and contributed to the recovery of cardiac function. Additionally, AFC1 reversed the elevation of PDGFR expression induced by PDGF-AB in both neonatal rat cardiomyocytes (NCMs) and neonatal rat cardiac fibroblasts (NCFs) and suppressed PDGF-AB induced NCM hypertrophy via STAT3 pathway and NCF collagen synthesis through p38-MAPK signaling in vitro. Similarly, AFC1 may contribute to the recovery of cardiac function in mice post MI/R via suppressing STAT signaling. Our results confirmed that AFC1 exerts anti-hypertrophic and anti-fibrotic effects against MI/R-induced cardiac remodeling, and suggest that AFC1 may have a promising potential in improving the outcome of patients who suffered from MI/R.


Low expression of ACLY associates with favorable prognosis in acute myeloid leukemia.

  • Jinghan Wang‎ et al.
  • Journal of translational medicine‎
  • 2019‎

Aberrant metabolism is a hallmark of cancer cells. Recently, ATP citrate-lyase (ACLY) expression was demonstrated as an independent predictor of clinical outcome in solid tumors. However, no systematic study was conducted to explore the prognostic impact of ACLY on acute myeloid leukemia (AML).


Ubiquitin-like protein FAT10 promotes osteosarcoma growth by modifying the ubiquitination and degradation of YAP1.

  • Xuan Yi‎ et al.
  • Experimental cell research‎
  • 2020‎

Osteosarcoma is a common malignancy of the bone tissue. The rapid growth exhibited by this cancer is a primary challenge in its treatment. In many types of cancers, FAT10, a ubiquitin-like protein, is involved in several biological activities, especially cell proliferation. Herein, we demonstrate that FAT10 plays a vital role in tumorigenesis and is overexpressed in tumor tissues compared to its expression in adjacent normal tissues. Functional assays revealed that knockdown of FAT10 expression significantly repressed the proliferation of osteosarcoma in vitro and in vivo. Furthermore, our results indicate that FAT10 exhibits oncogenic functions by regulating the level of YAP1, a key protein of the Hippo/YAP signaling pathway, and a significant positive correlation exists between the levels of FAT10 and YAP1. Further analysis showed that FAT10-induced growth of osteosarcoma cells is dependent on YAP1. Mechanistically, FAT10 stabilizes YAP1 expression by regulating its ubiquitination and degradation. Taken together, our results link the two drivers of cell growth in osteosarcoma and reveal a novel pathway for FAT10 regulation. We provide new evidence for the biological and clinical significance of FAT10 as a potential biomarker for osteosarcoma.


TIGAR plays neuroprotective roles in KA-induced excitotoxicity through reducing neuroinflammation and improving mitochondrial function.

  • Si-Si Huang‎ et al.
  • Neurochemistry international‎
  • 2022‎

Excitotoxicity refers to the ability of excessive extracellular excitatory amino acids to damage neurons via receptor activation. It is a crucial pathogenetic process in neurodegenerative diseases. TP53 is confirmed to be involved in excitotoxicity. It is demonstrated that TP53 induced glycolysis and apoptotic regulator (TIGAR)-regulated metabolic pathway can protect against neuronal injury. However, the role of TIGAR in excitotoxicity and specific mechanisms is still unknown. In this study, an in vivo excitotoxicity model was constructed via stereotypical kainic acid (KA) injection into the striatum of mice. KA reduced TIGAR expression levels, neuroinflammatory responses and mitochondrial dysfunction. TIGAR overexpression could reverse KA-induced neuronal injury by reducing neuroinflammation and improving mitochondrial function, thereby exerting neuroprotective effects. Therefore, this study could provide a potential therapeutic target for neurodegenerative diseases.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: