Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Licochalcone A up-regulates of FasL in mesenchymal stem cells to strengthen bone formation and increase bone mass.

  • Leiguo Ming‎ et al.
  • Scientific reports‎
  • 2014‎

The role of bone marrow-derived mesenchymal stem cells(BMSCs)in the pathogenesis and therapy of osteoporosis has drawn increasing attention in recent years. In the development of osteoporosis, it has been demonstrated that many changes occurred in the behavior of BMSCs. For example, the biological system of FasL pathways mediated differentiation of ERK and GSK-3β-catenin pathway was damaged. Here we found that 0.35 mg/L Licochalcone A (L-A) had a strong effect in increasing the osteogenic differentiation and mineralization of BMSCs both in vivo and in vitro by up-regulating FasL and further playing a role in regulating the ERK and GSK-3β-catenin systems. It has also demonstrated that the administration of L-A could restore the biological function of the damaged BMSCs differentiation by recovering or protecting bone mass in a disease state through activating the endosteal bone formation and partially inhibiting bone resorption in acute estrogen deficiency model. Results of our study suggested that careful titration of MSC was response to L-A and up-regulated FasL pathways mediating differentiation of ERK and GSK-3β-catenin biological systems under disease state in vivo, restore the impaired function, is one of the ways of L-A relieve or treatment osteoporosis.


Manganese superoxide dismutase is required to maintain osteoclast differentiation and function under static force.

  • Tao Guo‎ et al.
  • Scientific reports‎
  • 2015‎

Bone homeostasis is maintained by the balance of osteoblasts (OBs) and osteoclasts (OCs). Increased activity of OCs not only contributes to pathological bone resorption, such as osteoporosis and periodontitis, but also is responsible for physiological conditions like orthodontic tooth movement (OTM). However, the detailed mechanism by which orthodontic force promotes the formation of OCs is still poorly understood. In this study, we confirmed that static force promoted the differentiation of human cord monocytes (HMNCs) into OCs depending on loading time and magnitude. Protein expression profiles among HMNCs, HMNCs subjected to static force and mature OCs were established via 2-DE and MALDI-TOF-MS analyses. Total respective protein spot numbers of 549 ± 13, 612 ± 19 and 634 ± 16 were detected in each of the gels by image analysis. The five proteins identified were plasminogen activator inhibitor 2 (PAI-2, Spot 1), peroxiredoxin-6 (PRD-6, Spot 3), manganese superoxide dismutase (SOD2, Spot 6), Rho GDP-dissociation inhibitor 2 (Rho-GDI2, Spot 11) and L-lactate dehydrogenase B chain (L-LDH, Spot 15). More importantly, we revealed that SOD2 was required to maintain monocyte differentiation into functional OCs and may become a potential target for regulating the efficiency of OTM in the future.


Osthole improves function of periodontitis periodontal ligament stem cells via epigenetic modification in cell sheets engineering.

  • Jin Sun‎ et al.
  • Scientific reports‎
  • 2017‎

Inflammatory microenvironment causes the change of epigenetic modification in periodontal ligament stem cells derived from periodontitis tissues (P-PDLSCs), which results in defective osteogenic differentiation compared to cells from healthy tissues. It's urgent to explore therapeutic strategies aimed at epigenetic targets associated with the regenerative ability of PDLSCs. Osthole, a small-molecule compound extracted from Chinese herbs, has been documented to promote osteogenesis and cell sheets formation of healthy PDLSCs. However, whether osthole shows same effect on P-PDLSCs and the mechanism of promotive effect is still unknown. The purpose of this study was to determine whether Osthole could restore defective osteogenic differentiation of P-PDLSCs via epigenetic modification. We demonstrated that 10-7 Mol/L of Osthole was the best concentration for osteogenic differentiation and proliferation of P-PDLSCs. Mechanistically, we also found that Osthole upregulated MOZ and MORF, histone acetylases that specifically catalyze acetylation of Histone3 lisine9 (H3K9) and Histone3 lisine14 (H3K14), which are key regulators in osteogenic differentiation of P-PDLSCs. Furthermore, Osthole treatment improved cell sheet formation and enhanced the bone formation of PDLSC sheets in animal models of periodontitis. Our study suggests that Osthole is a promising drug to cure periodontitis via regulating epigenetic modification in cell sheets engineering.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: