Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 25 papers

Repression of Noxa by Bmi1 contributes to deguelin-induced apoptosis in non-small cell lung cancer cells.

  • Wei Li‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2018‎

Deguelin, a natural rotenoid isolated from several plants, has been reported to exert anti-tumour effects in various cancers. However, the molecular mechanism of this regulation remains to be fully elucidated. Here, we found that deguelin inhibited the growth of non-small cell lung cancer (NSCLC) cells both in vitro and in vivo by downregulation of Bmi1 expression. Our data showed that Bmi1 is highly expressed in human NSCLC tissues and cell lines. Knockdown of Bmi1 significantly suppressed NSCLC cell proliferation and colony formation. Deguelin treatment attenuated the binding activity of Bmi1 to the Noxa promoter, thus resulting in Noxa transcription and apoptosis activation. Knockdown of Bmi1 promoted Noxa expression and enhanced deguelin-induced apoptosis, whereas overexpression of Bmi1 down-regulated Noxa protein level and deguelin-induced apoptosis. Overall, our study demonstrated a novel apoptotic mechanism for deguelin to exert its anti-tumour activity in NSCLC cells.


Comparative analysis of serum proteome in congenital scoliosis patients with TBX6 haploinsufficiency - a first report pointing to lipid metabolism.

  • Qiankun Zhu‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2018‎

Congenital scoliosis (CS) is a three-dimensional deformity of the spine affecting quality of life. We have demonstrated TBX6 haploinsufficiency is the most important contributor to CS. However, the pathophysiology at the protein level remains unclear. Therefore, this study was to explore the differential proteome in serum of CS patients with TBX6 haploinsufficiency. Sera from nine CS patients with TBX6 haploinsufficiency and nine age- and gender-matched healthy controls were collected and analysed by isobaric tagged relative and absolute quantification (iTRAQ) labelling coupled with mass spectrometry (MS). In total, 277 proteins were detected and 20 proteins were designated as differentially expressed proteins, which were submitted to subsequent bioinformatics analysis. Gene Ontology classification analysis showed the biological process was primarily related to 'cellular process', molecular function 'structural molecule activity' and cellular component 'extracellular region'. IPA analysis revealed 'LXR/RXR activation' was the top pathway, which is a crucial pathway in lipid metabolism. Hierarchical clustering analysis generated two clusters. In summary, this study is the first proteomic research to delineate the total and differential serum proteins in TBX6 haploinsufficiency-caused CS. The proteins discovered in this experiment may serve as potential biomarkers for CS, and lipid metabolism might play important roles in the pathogenesis of CS.


MicroRNA-98 regulates osteogenic differentiation of human bone mesenchymal stromal cells by targeting BMP2.

  • Guo-Ping Zhang‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2017‎

To study the effects of microRNA-98 (miR-98) on human bone mesenchymal stromal cells (hBMSCs). The patients undergoing hip arthroplasty were selected by inclusion/exclusion criteria for this study. The extracted hBMSCs were detected of osteogenic differentiation by alizarin red S staining, and of cell phenotype by flow cytometry. Bioinformatics, dual luciferase report, western blotting, RT-PCR and immunoblotting were used in our study. The hBMSCs were divided into miR-98 mimics, miR-98 negative control (NC), miR-98 inhibitors, Mock and miR-98 inhibitors + siBMP2 groups. Human bone mesenchymal stromal cells were extracted and purified in vitro and had specific cytological morphology, surface markers and abilities of self-renewal and differentiation. Compared with the NC group and Mock group, the miR-98 mimics group showed increased miR-98 level while the miR-98 inhibitors group decreased miR-98 level (both P < 0.01). Dual luciferase reporter showed BMP2 was the target gene of miR-98. The levels of mRNA and protein expression of BMP2, protein expression of RUNX2, alkaline phosphatase activity and osteocalcin content significantly decreased in the miR-98 mimics group while increased in the miR-98 inhibitors group and showed no changes in the NC group and Mock group (all P < 0.05). The miR-98 mimics group showed obviously declined stained red particles and the miR-98 inhibitors group showed opposite result. After lowering the expression of miR-98, osteogenic differentiation ability of hBMSCs rose, which was weakened by the transfection with siBMP2. miR-98 may regulate osteogenic differentiation of hBMSCs by targeting BMP2.


CircRUNX2 through has-miR-203 regulates RUNX2 to prevent osteoporosis.

  • Qudong Yin‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2018‎

We aimed to discover the molecular mechanism of hsa_circ_0076694 (circRUNX2) on osteogenic differentiation. We also explored the interaction between circRUNX2, miR-203 and RUNX2.


Phosphorylated STAT3 suppresses microRNA-19b/1281 to aggravate lung injury in mice with type 2 diabetes mellitus-associated pulmonary tuberculosis.

  • Xianhua Wang‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2020‎

Type 2 diabetes mellitus (T2DM) is a risk factor for pulmonary tuberculosis (PTB) and increased mortality. This work focused on the functions of phosphorylated STAT3 in lung injury in mouse with T2DM-associated PTB and the molecules involved. A mouse model with T2DM-PTB was induced by administrations of streptozotocin, nicotinamide and mycobacterium tuberculosis (Mtb). A pSTAT3-specific inhibitor AG-490 was given into mice and then the lung injury in mice was observed. The molecules involved in AG-490-mediated events were screened out. Altered expression of miR-19b, miR-1281 and NFAT5 was introduced to identify their involvements and roles in lung injury and PTB severity in the mouse model. Consequently, pSTAT3 expression in mice with T2DM-associated PTB was increased. Down-regulation of pSTAT3 by AG-490 prolonged the lifetime of mice and improved the histopathologic conditions, and inhibited the fibrosis, inflammation, Mtb content and number of apoptotic epithelial cells in mouse lung tissues. pSTAT3 transcriptionally suppressed miR-19b/1281 expression to up-regulate NFAT5. Inhibition of miR-19b/1281 or up-regulation of NFAT5 blocked the protective roles of AG-490 in mouse lung tissues. To conclude, this study evidenced that pSTAT3 promotes NFAT5 expression by suppressing miR-19b/1281 transcription, leading to lung injury aggravation and severity in mice with T2DM-associated PTB.


Overexpression of PD-L1 causes germ cells to slough from mouse seminiferous tubules via the PD-L1/PD-L1 interaction.

  • Lian Fang‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2022‎

Spermatogenesis is a cyclical process in which different generations of spermatids undergo a series of developmental steps at a fixed time and finally produce spermatids. Here, we report that overexpression of PD-L1 (B7 homolog1) in the testis causes sperm developmental disorders and infertility in male mice, with severe malformation and sloughing during spermatid development, characterized by disorganized and collapsed seminiferous epithelium structure. PD-L1 needs to be simultaneously expressed on Sertoli cells and spermatogonia to cause spermatogenesis failure. After that, we excluded the influence of factors such as the PD-L1 receptor and humoral regulation, confirming that PD-L1 has an intrinsic function to interact with PD-L1. Studies have shown that PD-L1 not only serves as a ligand but also plays a receptor-like role in signal transduction. PD-L1 interacts with PD-L1 to affect the adhesive function of germ cells, causing malformation and spermatid sloughing. Taken together, these results indicate that PD-L1 can interact with PD-L1 to cause germ cell detachment and male infertility.


Aurora kinase A stabilizes FOXM1 to enhance paclitaxel resistance in triple-negative breast cancer.

  • Na Yang‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2019‎

Triple-negative breast cancer (TNBC) has a relatively poor outcome. Acquired chemoresistance is a major clinical challenge for TNBC patients. Previously, we reported that kinase-dead Aurora kinase A (Aurora-A) could effectively transactivate the FOXM1 promoter. Here, we demonstrate an additional pathway through which Aurora-A stabilizes FOXM1 by attenuating its ubiquitin in TNBC. Specifically, Aurora-A stabilizes FOXM1 in late M phase and early G1 phase of the cell cycle, which promotes proliferation of TNBC cells. Knock-down of Aurora-A significantly suppresses cell proliferation in TNBC cell lines and can be rescued by FOXM1 overexpression. We observe that paclitaxel-resistant TNBC cells exhibit high expression of Aurora-A and FOXM1. Overexpression of Aurora-A offers TNBC cells an additional growth advantage and protection against paclitaxel. Moreover, Aurora-A and FOXM1 could be simultaneously targeted by thiostrepton. Combination of thiostrepton and paclitaxel treatment reverses paclitaxel resistance and significantly inhibits cell proliferation. In conclusion, our study reveals additional mechanism through which Aurora-A regulates FOXM1 and provides a new therapeutic strategy to treat paclitaxel-resistant triple-negative breast cancer.


Tamoxifen inhibits cell proliferation by impaired glucose metabolism in gallbladder cancer.

  • Shuai Huang‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2020‎

Gallbladder cancer (GBC) is the leading malignancy of biliary system showing refractory chemoresistance to current first-line drugs. Growing epidemiological evidences have established that the incidence of GBC exhibits significant gender predominance with females two-threefold higher than males, suggesting oestrogen/oestrogen receptors (ERs) signalling might be a critical driver of tumorigenesis in gallbladder. This study aims to evaluate the antitumour activity of tamoxifen (TAM), a major agent of hormonal therapy for breast cancer, in preclinical GBC model. Quantitative real-time PCR was used to investigate mRNA levels. Protein expression was measured by immunohistochemistry and Western blot. Glycolytic levels were measured by glucose consumption and lactic acid measurement. The antitumour activity of TAM alone or with cisplatin was examined with CCK8 assay, colony formation, flow cytometry and in vivo models. The results revealed that ERɑ expression was higher in GBC tissues and predicted poor clinical outcomes. TAM was showed effective against a variety of GBC cell lines. Mechanical investigations revealed that TAM enabled potent reactive oxygen species (ROS) production by reduced nuclear factor Nrf2 expression and its target genes, leading to the activation of AMPK, which subsequently induced impaired glycolysis and survival advantages. Notably, TAM was demonstrated to sensitize GBC cells to cisplatin (CDDP) both in vitro and in vivo. In agreement with these findings, elimination of oestrogens by ovariectomy in nude mice prevented CDDP resistance. In summary, these results provide basis for TAM treatment for GBC and shed novel light on the potential application of endocrine therapy for patients with GBC.


Cardioprotective effects of melatonin against myocardial ischaemia/reperfusion injury: Activation of AMPK/Nrf2 pathway.

  • Chennian Xu‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2021‎

Although reperfusion is the most effective therapy for patients with acute myocardial infarction, reperfusion injury limits the therapeutic effects of early reperfusion. Oxidative stress plays a crucial role in myocardial ischaemia/reperfusion (I/R) injury. Melatonin, a circulating hormone, is well-known as an antioxidant in cardiovascular diseases. In this short communication, we show that melatonin significantly improves post-ischaemic cardiac function, reduces infarct size and decreases oxidative stress. Furthermore, melatonin markedly increases AMPK activation and Nrf2 nuclear translocation. Nevertheless, these melatonin-induced changes are abrogated by compound C. In addition, ML-385, an Nrf2 inhibitor, also withdraws the antioxidative effects of melatonin but has little effect on AMPK activation. In conclusion, our results demonstrate that melatonin alleviates myocardial I/R injury by inhibiting oxidative stress via the AMPK/Nrf2 signalling pathway.


Inhibition of PKC-δ reduce rhabdomyolysis-induced acute kidney injury.

  • Dengke Wu‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2022‎

Despite extensive research, the mechanisms underlying rhabdomyolysis-induced acute kidney injury (AKI) remain largely elusive. In this study, we established both cell and murine models of rhabdomyolysis-induced AKI by using myoglobin and glycerin, respectively, and provided evidence that protein kinase Cδ (PKC-δ) was activated in both models and subsequently promoted cell apoptosis. Moreover, we found that this detrimental effect of PKC-δ activation can be reversed by its pharmaceutical inhibitor rottlerin. Furthermore, we detected and confirmed the existence of PKC-δ-mediated myoglobin-induced cell apoptosis and the expression of TNF-α and IL1-β via regulation of the p38MAPK and ERK1/2 signalling pathways. In summary, our research revealed the role of PKC-δ in renal cell apoptosis and suggests that PKC-δ is a viable therapeutic target for rhabdomyolysis-induced AKI.


Visfatin aggravates transverse aortic constriction-induced cardiac remodelling by enhancing macrophage-mediated oxidative stress in mice.

  • Caijie Shen‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2023‎

Previous studies have reported that visfatin can regulate macrophage polarisation, which has been demonstrated to participate in cardiac remodelling. The aims of this study were to investigate whether visfatin participates in transverse aortic constriction (TAC)-induced cardiac remodelling by regulating macrophage polarisation. First, TAC surgery and angiotensin II (Ang II) infusion were used to establish a mouse cardiac remodelling model, visfatin expression was measured, and the results showed that TAC surgery or Ang II infusion increased visfatin expression in the serum and heart in mice, and phenylephrine or hydrogen peroxide promoted the release of visfatin from macrophages in vitro. All these effects were dose-dependently reduced by superoxide dismutase. Second, visfatin was administered to TAC mice to observe the effects of visfatin on cardiac remodelling. We found that visfatin increased the cross-sectional area of cardiomyocytes, aggravated cardiac fibrosis, exacerbated cardiac dysfunction, further regulated macrophage polarisation and aggravated oxidative stress in TAC mice. Finally, macrophages were depleted in TAC mice to investigate whether macrophages mediate the regulatory effect of visfatin on cardiac remodelling, and the results showed that the aggravating effects of visfatin on oxidative stress and cardiac remodelling were abrogated. Our study suggests that visfatin enhances cardiac remodelling by promoting macrophage polarisation and enhancing oxidative stress. Visfatin may be a potential target for the prevention and treatment of clinical cardiac remodelling.


Transgenic overexpression of ITGB6 in intestinal epithelial cells exacerbates dextran sulfate sodium-induced colitis in mice.

  • Haiyan Chen‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2021‎

Integrins, as a large family of cell adhesion molecules, play a crucial role in maintaining intestinal homeostasis. In inflammatory bowel disease (IBD), homeostasis is disrupted. Integrin αvβ6, which is mainly regulated by the integrin β6 subunit gene (ITGB6), is a cell adhesion molecule that mediates cell-cell and cell-matrix interactions. However, the role of ITGB6 in the pathogenesis of IBD remains elusive. In this study, we found that ITGB6 was markedly upregulated in inflamed intestinal tissues from patients with IBD. Then, we generated an intestinal epithelial cell-specific ITGB6 transgenic mouse model. Conditional ITGB6 transgene expression exacerbated experimental colitis in mouse models of acute and chronic dextran sulphate sodium (DSS)-induced colitis. Survival analyses revealed that ITGB6 transgene expression correlated with poor prognosis in DSS-induced colitis. Furthermore, our data indicated that ITGB6 transgene expression increased macrophages infiltration, pro-inflammatory cytokines secretion, integrin ligands expression and Stat1 signalling pathway activation. Collectively, our findings revealed a previously unknown role of ITGB6 in IBD and highlighted the possibility of ITGB6 as a diagnostic marker and therapeutic target for IBD.


miR-1-3p and miR-206 sensitizes HGF-induced gefitinib-resistant human lung cancer cells through inhibition of c-Met signalling and EMT.

  • Demin Jiao‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2018‎

Hepatocyte growth factor (HGF) overexpression is an important mechanism in acquired epidermal growth factor receptor (EGFR) kinase inhibitor gefitinib resistance in lung cancers with EGFR activating mutations. MiR-1-3p and miR-206 act as suppressors in lung cancer proliferation and metastasis. However, whether miR-1-3p and miR-206 can overcome HGF-induced gefitinib resistance in EGFR mutant lung cancer is not clear. In this study, we showed that miR-1-3p and miR-206 restored the sensitivities of lung cancer cells PC-9 and HCC-827 to gefitinib in present of HGF. For the mechanisms, we demonstrated that both miR-1-3p and miR-206 directly target HGF receptor c-Met in lung cancer. Knockdown of c-Met mimicked the effects of miR-1-3p and miR-206 transfections Meanwhile, c-Met overexpression attenuated the effects of miR-1-3p and miR-206 in HGF-induced gefitinib resistance of lung cancers. Furthermore, we showed that miR-1-3p and miR-206 inhibited c-Met downstream Akt and Erk pathway and blocked HGF-induced epithelial-mesenchymal transition (EMT). Finally, we demonstrated that miR-1-3p and miR-206 can increase gefitinib sensitivity in xenograft mouse models in vivo. Our study for the first time indicated the new function of miR-1-3p and miR-206 in overcoming HGF-induced gefitinib resistance in EGFR mutant lung cancer cell.


Pathway mapping and development of disease-specific biomarkers: protein-based network biomarkers.

  • Hao Chen‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2015‎

It is known that a disease is rarely a consequence of an abnormality of a single gene, but reflects the interactions of various processes in a complex network. Annotated molecular networks offer new opportunities to understand diseases within a systems biology framework and provide an excellent substrate for network-based identification of biomarkers. The network biomarkers and dynamic network biomarkers (DNBs) represent new types of biomarkers with protein-protein or gene-gene interactions that can be monitored and evaluated at different stages and time-points during development of disease. Clinical bioinformatics as a new way to combine clinical measurements and signs with human tissue-generated bioinformatics is crucial to translate biomarkers into clinical application, validate the disease specificity, and understand the role of biomarkers in clinical settings. In this article, the recent advances and developments on network biomarkers and DNBs are comprehensively reviewed. How network biomarkers help a better understanding of molecular mechanism of diseases, the advantages and constraints of network biomarkers for clinical application, clinical bioinformatics as a bridge to the development of diseases-specific, stage-specific, severity-specific and therapy predictive biomarkers, and the potentials of network biomarkers are also discussed.


Hepatitis B virus-induced hyperactivation of B cells in chronic hepatitis B patients via TLR4.

  • Yang Li‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2020‎

B cell hyperactivation and functional impairment were identified from patients with chronic hepatitis B virus (CHB) infection; however, the underlying mechanism remains unknown. Here, we aim to elucidate the mechanisms responsible for B cell hyperactivation during HBV infection. Peripheral CD19+  B cells isolated from 4 CHB patients and 4 healthy volunteers were analysed by RNA sequencing. A total of 1401 differentially expressed genes were identified from B cell transcriptome of CHB patients vs healthy volunteers. We found that B cells from CHB patients were functional impaired, with increased TLR4 expression, activated NF-κB pathway and altered mitochondrial function. The expression of B cell activation-related genes, including TLR4, was further validated using additional clinical samples. To further verify the role of TLR4 in B cell activation during CHB, B cell phenotypes were determined in wild-type (WT) and TLR4-/- HBV-carrier mice. Hyperactivated B cell and TLR4 signalling pathway were observed in WT HBV-carrier mice, while TLR4 ablation failed to induce B cell hyperactivation, and downstream MyD88 and NF-κB were also not altered. Taken together, TLR4 pathway plays a pivotal role in B cell hyperactivation during CHB, which might serve as a promising target for B cell function restoration.


Oridonin prevents insulin resistance-mediated cognitive disorder through PTEN/Akt pathway and autophagy in minimal hepatic encephalopathy.

  • Fangfang Wen‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2020‎

Minimal hepatic encephalopathy (MHE) was characterized for cognitive dysfunction. Insulin resistance (IR) has been identified to be correlated with the pathogenesis of MHE. Oridonin (Ori) is an active terpenoid, which has been reported to rescue synaptic loss and restore insulin sensitivity. In this study, we found that intraperitoneal injection of Ori rescued IR, reduced the autophagosome formation and synaptic loss and improved cognitive dysfunction in MHE rats. Moreover, in insulin-resistant PC12 cells and N2a cells, we found that Ori blocked IR-induced synaptic deficits via the down-regulation of PTEN, the phosphorylation of Akt and the inhibition of autophagy. Taken together, these results suggested that Ori displays therapeutic efficacy towards memory deficits via improvement of IR in MHE and represents a novel bioactive therapeutic agent for treating MHE.


Therapeutic effects of higenamine combined with [6]-gingerol on chronic heart failure induced by doxorubicin via ameliorating mitochondrial function.

  • Jianxia Wen‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2020‎

Higenamine (HG) is a natural benzylisoquinoline alkaloid isolated from Aconitum with positive inotropic and chronotropic effects. This study aimed to investigate the possible cardioprotective effects of HG combined with [6]-gingerol (HG/[6]-GR) against DOX-induced chronic heart failure (CHF) by comprehensive approaches. DOX-induced cardiotoxicity model in rats and H9c2 cells was established. Therapeutic effects of HG/[6]-GR on haemodynamics, serum indices and histopathology of cardiac tissue were analysed. Cell mitochondrial energy phenotype and cell mitochondrial fuel flex were measured by a Seahorse XFp analyser. Moreover, UHPLC-Q-TOF/MS was performed to explore the potential metabolites affecting the therapeutic effects and pathological process of CHF. To further investigate the potential mechanism of HG/[6]-GR, mRNA and protein expression levels of RAAS and LKB1/AMPK/Sirt1-related pathways were detected. The present data demonstrated that the therapeutic effects of HG/[6]-GR combination on CHF were presented in ameliorating heart function, down-regulation serum indices and alleviating histological damage of heart tissue. Besides, HG/[6]-GR has an effect on increasing cell viability of H9c2 cells, ameliorating DOX-induced mitochondrial dysfunction and elevating mitochondrial OCR and ECAR value. Metabolomics analyses showed that the therapeutic effect of HG/[6]-GR combination is mainly associated with the regulation of fatty acid metabolites and energy metabolism pathways. Furthermore, HG/[6]-GR has an effect on down-regulating RAAS pathway-related molecules and up-regulating LKB1/AMPKα/Sirt1-related pathway. The present work demonstrates that HG/[6]-GR prevented DOX-induced cardiotoxicity via the cardiotonic effect and promoting myocardial energy metabolism through the LKB1/AMPKα/Sirt1 signalling pathway, which promotes mitochondrial energy metabolism and protects against CHF.


Hydrogen sulphide ameliorates dopamine-induced astrocytic inflammation and neurodegeneration in minimal hepatic encephalopathy.

  • Weishan Zhuge‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2020‎

It has been demonstrated that the action of dopamine (DA) could enhance the production of tumour necrosis factor-α (TNF-α) by astrocytes and potentiate neuronal apoptosis in minimal hepatic encephalopathy (MHE). Recently, sodium hydrosulfide (NaHS) has been found to have neuroprotective properties. Our study addressed whether NaHS could rescue DA-challenged inflammation and apoptosis in neurons to ameliorate memory impairment in MHE rats and in the neuron and astrocyte coculture system. We found that NaHS suppressed DA-induced p65 acetylation, resulting in reduced TNF-α production in astrocytes both in vitro and in vivo. Furthermore, decreased apoptosis was observed in neurons exposed to conditioned medium from DA + NaHS-challenged astrocytes, which was similar to the results obtained in the neurons exposed to TNF-α + NaHS, suggesting a therapeutic effect of NaHS on the suppression of neuronal apoptosis via the reduction of TNF-α level. DA triggered the inactivation of p70 S6 ribosomal kinase (S6K1) and dephosphorylation of Bad, resulting in the disaggregation of Bclxl and Bak and the release of cytochrome c (Cyt. c), and this process could be reversed by NaHS administration. Our work demonstrated that NaHS attenuated DA-induced astrocytic TNF-α release and ameliorated inflammation-induced neuronal apoptosis in MHE. Further research into this approach may uncover future potential therapeutic strategies for MHE.


Reduced expression of proteolipid protein 2 increases ER stress-induced apoptosis and autophagy in glioblastoma.

  • Zichao Feng‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2020‎

Proteolipid protein 2 (PLP2) is an integral ion channel membrane protein of the endoplasmic reticulum. The protein has been shown to be highly expressed in many cancer types, but its importance in glioma progression is poorly understood. Using publicly available datasets (Rembrandt, TCGA and CGGA), we found that the expression of PLP2 was significantly higher in high-grade gliomas than in low-grade gliomas. We confirmed these results at the protein level through IHC staining of high-grade (n = 56) and low-grade glioma biopsies (n = 16). Kaplan-Meier analysis demonstrated that increased PLP2 expression was associated with poorer patient survival. In functional experiments, siRNA and shRNA PLP2 knockdown induced ER stress and increased apoptosis and autophagy in U87 and U251 glioma cell lines. Inhibition of autophagy with chloroquine augmented apoptotic cell death in U87- and U251-siPLP2 cells. Finally, intracranial xenografts derived from U87- and U251-shPLP2 cells revealed that loss of PLP2 reduced glioma growth in vivo. Our results therefore indicate that increased PLP2 expression promotes GBM growth and that PLP2 represents a potential future therapeutic target.


PRMT5 promotes colorectal cancer growth by interaction with MCM7.

  • Xiangwei Li‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2021‎

Protein arginine methyltransferase 5 (PRMT5) is a type of methyltransferase enzyme that can catalyse arginine methylation of histones and non-histone proteins. Accumulating evidence indicates that PRMT5 promotes cancer development and progression. However, its function in colorectal cancer (CRC) is poorly understood. In this study, we revealed the oncogenic roles of PRMT5 in CRC. We found that PRMT5 promoted CRC cell proliferation, migration and invasion in vitro and in vivo. We identified minichromosome maintenance-7 (MCM7) as the direct PRMT5-binding partner. A co-immunoprecipitation (co-IP) assay indicated that PRMT5 physically interacted with MCM7 and that the direct binding domain was located between residues 1-248 in MCM7. In addition, our results from analysis of 99 CRC tissues and 77 adjacent non-cancerous tissues indicated that the PRMT5 and MCM7 expression levels were significantly higher in CRC tissues than in control tissues, which was further confirmed by bioinformatic analysis using TCGA and GEO datasets. We also found that MCM7 promoted CRC cell proliferation, migration and invasion in vitro. Furthermore, we observed that increased PRMT5 expression predicted unfavourable patient survival in CRC patients and in the subgroup of patients with a tumour size of ≤5 cm. These data suggested that PRMT5 and MCM7 might be novel potential targets for the treatment of CRC.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: