Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 33 papers

Soluble Toll-like receptor 4 is a potential serum biomarker in non-small cell lung cancer.

  • Feng Wei‎ et al.
  • Oncotarget‎
  • 2016‎

This study investigated the clinical significance of serum soluble Toll-like receptor 4 (sTLR4) in non-small cell lung cancer (NSCLC). A total of 54 NSCLC patients and 13 healthy volunteers were enrolled from January 2012 to December 2013. The patients with NSCLC were characterized by significantly higher serum levels of sTLR4 compared with those in healthy controls (P < 0.01). A positive correlation between serum sTLR4 and tumor stage was found in patients with stages I-III NSCLC. However, serum sTLR4 in patients with metastatic NSCLC was significantly decreased compared with those with stage III NSCLC (P < 0.05). Furthermore, low serum sTLR4 was identified as a prognostic marker for poor survival of early-stage NSCLC patients who received surgical resection. In conclusion, our present study identified sTLR4 as a potential serum biomarker of NSCLC.


Inhibition of heat shock protein 90 improves pulmonary arteriole remodeling in pulmonary arterial hypertension.

  • Guo-Kun Wang‎ et al.
  • Oncotarget‎
  • 2016‎

While the molecular chaperone heat shock protein 90 (HSP90) is involved in a multitude of physiological and pathological processes, its role relating to pulmonary arterial hypertension (PAH) remains unclear. In the present study, we investigated the effect in which HSP90 improves pulmonary arteriole remodeling, and explored the therapeutic utility of targeting HSP90 as therapeutic drug for PAH. By Elisa and immunohistochemistry, HSP90 was found to be increased in both plasma and membrane walls of pulmonary arterioles from PAH patients. Moreover, plasma HSP90 levels positively correlated with mean pulmonary arterial pressure and C-reactive protein. In a monocrotaline-induced rat model of PH, we found that 17-AAG, a HSP90-inhibitor, alleviated the progress of PH, demonstrated by lower pulmonary arterial pressure and absence of right ventricular hypertrophy. Immunohistochemical staining demonstrated that 17-AAG improved pulmonary arteriole remodeling on the basis of reduced wall thickness and wall area. The inflammatory response attributed to PH could be attenuated by 17-AAG through reduction of NF-κB signaling. Moreover, 17-AAG was found to suppress PDGF-stimulated proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) through induction of cell cycle arrest in the G1 phase. In conclusion, HSP90 inhibitor 17-AAG could improve pulmonary arteriole remodeling via inhibiting the excessive proliferation of PASMCs, and inhibition of HSP90 may represent a therapeutic avenue for the treatment of PAH.


Profiling the dynamic expression of checkpoint molecules on cytokine-induced killer cells from non-small-cell lung cancer patients.

  • Lin Zhang‎ et al.
  • Oncotarget‎
  • 2016‎

Immune checkpoints associate with dysfunctional T cells, which have a reduced ability to clear pathogens or cancer cells. T-cell checkpoint blockade may improve patient survival. However, checkpoint molecules on cytokine-induced killer (CIK) cell, a non-specific adoptive immunotherapy, remain unknown. In present study, we detected the dynamic expression of eight major checkpoint molecules (CTLA-4, PD-1, PD-L1, TIM- 3, CEACAM-1, LAG-3, TIGIT and BTLA) on CIK cells from NSCLC patients. The majority of these molecules, except BTLA, were sharply elevated during the early stage of CIK cell culture. Thereafter, PD-1 and TIGIT expressions decreased gradually towards the initial level (day 0). Moreover, CTLA-4 faded away during the later stage of CIK culture. LAG-3 expression decreased but was still significantly higher than the initial level. Of note, PD-L1 remained stably upregulated during CIK culture compared with PD-1, indicating that PD-L1 might act as an inhibitory molecule on CIK cells instead of PD-1. Furthermore, TIM-3 and CEACAM1 were strongly expressed simultaneously during long-term CIK culture and showed a significant and mutually positive correlation. BTLA displayed a distinct pattern, and its expression gradually decreased throughout the CIK culture. These observations suggested that CIK cells might be partly exhausted before clinical transfusion, characterized by the high expression of PD-L1, LAG-3, TIM- 3, and CEACAM-1 and the low expression of TIGIT, BTLA, PD-1, and CTLA-4 compared with initial culture. Our results imply that implementing combined treatment on CIK cells before transfusion via antibodies targeting PD-L1, LAG-3, TIM-3, and CEACAM-1 might improve the efficiency of CIK therapy for NSCLC patients.


Systematic meta-analyses of gene-specific genetic association studies in prostate cancer.

  • Qiang Hao‎ et al.
  • Oncotarget‎
  • 2016‎

In the past twenty-five years, over 700 case-control association studies on the risk of prostate cancer have been published worldwide, but their results were largely inconsistent. To facilitate following and explaining these findings, we performed a systematic meta-analysis using allelic contrasts for gene-specific SNVs from at least three independent population-based case-control studies, which were published in the field of prostate cancer between August 1, 1990 and August 1, 2015. Across 66 meta-analyses, a total of 20 genetic variants involving 584,100 subjects in 19 different genes (KLK3, IGFBP3, ESR1, SOD2, CAT, CYP1B1, VDR, RFX6, HNF1B, SRD5A2, FGFR4, LEP, HOXB13, FAS, FOXP4, SLC22A3, LMTK2, EHBP1 and MSMB) exhibited significant association with prostate cancer. The average summary OR was 1.33 (ranging from: 1.016-3.788) for risk alleles and 0.838 (ranging from: 0.757-0.896) for protective alleles. Of these positive variants, FOXP4 rs1983891, LMTK2 rs6465657 and RFX6 rs339331 had not been previously meta-analyzed. Further analyses with sufficient power design and investigations of the potential biological roles of these genetic variants in prostate cancer should be conducted.


Elevated NIBP/TRAPPC9 mediates tumorigenesis of cancer cells through NFκB signaling.

  • Yonggang Zhang‎ et al.
  • Oncotarget‎
  • 2015‎

Regulatory mechanisms underlying constitutive and inducible NFκB activation in cancer remain largely unknown. Here we investigated whether a novel NIK- and IKK2-binding protein (NIBP) is required for maintaining malignancy of cancer cells in an NFκB-dependent manner. Real-time polymerase chain reaction analysis of a human cancer survey tissue-scan cDNA array, immunostaining of a human frozen tumor tissue array and immunoblotting of a high-density reverse-phase cancer protein lysate array showed that NIBP is extensively expressed in most tumor tissues, particularly in breast and colon cancer. Lentivirus-mediated NIBP shRNA knockdown significantly inhibited the growth/proliferation, invasion/migration, colony formation and xenograft tumorigenesis of breast (MDA-MB-231) or colon (HCT116) cancer cells. NIBP overexpression in HCT116 cells promoted cell proliferation, migration and colony formation. Mechanistically, NIBP knockdown in cancer cells inhibited cytokine-induced activation of NFκB luciferase reporter, thus sensitizing the cells to TNFα-induced apoptosis. Endogenous NIBP bound specifically to the phosphorylated IKK2 in a TNFα-dependent manner. NIBP knockdown transiently attenuated TNFα-stimulated phosphorylation of IKK2/p65 and degradation of IκBα. In contrast, NIBP overexpression enhanced TNFα-induced NFκB activation, thus inhibiting constitutive and TNFα-induced apoptosis. Collectively, our data identified important roles of NIBP in promoting tumorigenesis via NFκΒ signaling, spotlighting NIBP as a promising target in cancer therapeutic intervention.


Detection of nasopharyngeal carcinoma susceptibility with single nucleotide polymorphism analysis using next-generation sequencing technology.

  • Mu-Yun Wu‎ et al.
  • Oncotarget‎
  • 2017‎

Nasopharyngeal carcinoma (NPC) is a head and neck cancer with high incidence in South China and East Asia. To provide a theoretical basis for NPC risk screening and early prevention, we conducted a meta-analysis of relevant literature on the association of single nucleotide polymorphisms (SNP)s with NPC susceptibility. Further, expression of 15 candidate SNPs identified in the meta-analysis was evaluated in a cohort of NPC patients and healthy volunteers using next-generation sequencing technology. Among the 15 SNPs detected in the meta-analysis, miR-146a (rs2910164, C>G), HCG9 (rs3869062, A>G), HCG9 (rs16896923, T>C), MMP2 (rs243865, C>T), GABBR1 (rs2076483, T>C), and TP53 (rs1042522, C>G) were associated with decreased susceptibility to NPC, while GSTM1 (+/DEL), IL-10 (rs1800896, A>G), MDM2 (rs2279744, T>G), MDS1-EVI1 (rs6774494, G>A), XPC (rs2228000, C>T), HLA-F (rs3129055, T>C), SPLUNC1 (rs2752903, T>C; and rs750064, A>G), and GABBR1 (rs29232, G>A) were associated with increased susceptibility to NPC. In our case-control study, an association with increased risk for NPC was found for the AG vs AA genotype in HCG9 (rs3869062, A>G). In addition, heterozygous deletion of the GSTM1 allele was associated with increased susceptibility to NPC, while an SNP in GABBR1 (rs29232, G>A) was associated with decreased risk, and might thus have a protective role on NPC carcinogenesis. This work provides the first comprehensive assessment of SNP expression and its relationship to NPC risk. It suggests the need for well-designed, larger confirmatory studies to validate its findings.


Ubiquitin conjugating enzyme E2 L3 promoted tumor growth of NSCLC through accelerating p27kip1 ubiquitination and degradation.

  • Xingjie Ma‎ et al.
  • Oncotarget‎
  • 2017‎

The molecular pathogenesis of human lung cancer has not been completely clarified. Here, we reported that UBE2L3, a member of the ubiquitin-conjugating enzymes (E2s), were overexpressed in non-small-cell lung cancer (NSCLC) tissues compared with the non-tumor tissues. High expression of UBE2L3 was correlated with advanced tumor stage and adverse outcomes. Knockdown of UBE2L3 inhibited NSCLC cell growth while ectopic expression of UBE2L3 promoted NSCLC cell growth in a cell cycle dependent manner. The results of subcutaneous tumor xenograft studies revealed that knockdown of UBE2L3 attenuated the in vivo tumor growth. Mechanistically, we observed that UBE2L3 could interact with F-box protein Skp2, a member of the SCF (Skp2) ubiquitin ligase complex, and thus promoted the ubiquitination and proteasomal degradation of p27kip1. Furthermore, NSCLC cases with high level of UBE2L3 and low level of p27kip1 had worst prognosis, suggesting that combination of UBE2L3 and p27kip1 is a more powerful prognostic marker for NSCLC patients. Taken together, the current study presented a novel marker for predicting prognosis and a potential therapeutic target for NSCLC patients.


A PTEN-COL17A1 fusion gene and its novel regulatory role in Collagen XVII expression and GBM malignance.

  • Xiaoyan Yan‎ et al.
  • Oncotarget‎
  • 2017‎

Collagen XVII expression has recently been demonstrated to be correlated with the tumor malignance. While Collagen XVII is known to be widely distributed in neurons of the human brain, its precise role in pathogenesis of glioblastoma multiforme (GBM) is unknown. In this study, we identified and characterized a new PTEN-COL17A1 fusion gene in GMB using transcriptome sequencing. Although fusion gene did not result in measurable fusion protein production, its presence is accompanied with high levels of COL17A1 expression, revealed a novel regulatory mechanism of Collagen XVII expression by PTEN-COL17A1 gene fusion. Knocked down Collagen XVII expression in glioma cell lines resulted in decreased tumor invasiveness, along with significant reduction of MMP9 expression, while increased Collagen XVII expression promotes invasive activities of glioma cells and associated with GBM recurrences. Together, our results uncovered a new PTEN-COL17A1 fusion gene and its novel regulatory role in Collagen XVII expression and GBM malignance, and demonstrated that COL17A1 could serve as a useful prognostic biomarker and therapeutic targets for GBM.


A three ion channel genes-based signature predicts prognosis of primary glioblastoma patients and reveals a chemotherapy sensitive subtype.

  • Hao-Yuan Wang‎ et al.
  • Oncotarget‎
  • 2016‎

Increasing evidence suggests that ion channels not only regulate electric signaling in excitable cells but also play important roles in the development of brain tumor. However, the roles of ion channels in glioma remain controversial. In the present study, we systematically analyzed the expression patterns of ion channel genes in a cohort of Chinese patients with glioma using RNAseq expression profiling. First, a molecular signature comprising three ion channel genes (KCNN4, KCNB1 and KCNJ10) was identified using Univariate Cox regression and two-tailed student's t test conducted in overall survival (OS) and gene expression. We assigned a risk score based on three ion channel genes to each primary Glioblastoma multiforme (pGBM) patient. We demonstrated that pGBM patients who had a high risk of unfavorable outcome were sensitive to chemotherapy. Next, we screened the three ion genes-based signature in different molecular glioma subtypes. The signature showed a Mesenchymal subtype and wild-type IDH1 preference. Gene ontology (GO) analysis for the functional annotation of the signature showed that patients with high-risk scores tended to exhibit the increased expression of proteins associated with apoptosis, immune response, cell adhesion and motion and vasculature development. Gene Set Enrichment Analysis (GSEA) results showed that pathways associated with negative regulation of programmed cell death, cell proliferation and locomotory behavior were highly expressed in the high-risk group. These results suggest that ion channel gene expression could improve the subtype classification in gliomas at the molecular level. The findings in the present study have been validated in two independent cohorts.


Systematic comparison of biologically active foreign ions-codoped calcium phosphate microparticles on osteogenic differentiation in rat osteoporotic and normal mesenchymal stem cells.

  • Xiao-Yi Chen‎ et al.
  • Oncotarget‎
  • 2017‎

Osteoporosis is a disease characterized by structural deterioration of bone tissue, leading to skeletal fragility with increased fracture risk. Calcium phosphates (CaPs) are widely used in bone tissue engineering strategies as they have similarities to bone apatite except for the absence of trace elements (TEs) in the CaPs. Bioactive glasses (BGs) have also been used successfully in clinic for craniomaxillofacial and dental applications during the last two decades due to their excellent potential for bonding with bone and inducing osteoblastic differentiation. In this study, we evaluated the osteogenic effects of the ionic dissolution products of the quaternary Si-Sr-Zn-Mg-codoped CaP (TEs-CaP) or 45S5 Bioglass® (45S5 BG), both as mixtures and separately, on rat bone marrow-derived mesenchymal stem cells (rOMSCs & rMSCs) from osteoporotic and normal animals, using an MTT test and Alizarin Red S staining. The materials enhanced cell proliferation and osteogenic differentiation, especially the combination of the BG and TEs-CaP. Analysis by quantitative PCR and ELISA indicated that the expression of osteogenic-specific genes and proteins were elevated. These investigations suggest that the TEs-CaP and 45S5 BG operate synergistically to create an extracellular environment that promotes proliferation and terminal osteogenic differentiation of both osteoporotic and normal rMSCs.


Epigenetically regulated miR-145 suppresses colon cancer invasion and metastasis by targeting LASP1.

  • Wei Wang‎ et al.
  • Oncotarget‎
  • 2016‎

MiR-145 is a tumor-suppressive microRNA that participates in the malignant progression of colorectal cancer (CRC). Although miR-145 has been reported to inhibit proliferation and to induce apoptosis of CRC cells, the reports about its role in invasion and metastasis are controversial. The regulation of miR-145 its own expression also requires further elucidation. In this study, we firstly found that miR-145 is markedly downregulated in the metastatic tumors of CRC patients. Then through gain- and loss-of function studies, we demonstrated that miR-145 suppresses the invasion and metastasis of CRC cells. We also provided experimental evidences which include direct binding assays and verifications on tissue specimens to confirm that LIM and SH3 protein 1 (LASP1) is a direct target of miR-145. Furthermore, we identified the core promoter regions of miR-145 and observed the cooperation between histone methylation and transcription factors through binding to these core promoter regions to regulate the expression of miR-145 in CRC cells. Our study provides an insight into the regulatory network in CRC cells, thus offering new targets for treating CRC patients.


LncRNA profile study reveals four-lncRNA signature associated with the prognosis of patients with anaplastic gliomas.

  • Wen Wang‎ et al.
  • Oncotarget‎
  • 2016‎

Anaplastic glioma is Grade III and the median overall survival is about 37.6 months. However, there are still other factors that affect the prognosis for anaplastic glioma patients due to variable overall survival. So we screened four-lncRNA signature (AGAP2-AS1, TPT1-AS1, LINC01198 and MIR155HG) from the lncRNA expression profile from the GSE16011, CGGA and REMBRANDT datasets. The patients in low risk group had longer overall survival than high risk group (median OS 2208.25 vs. 591.30 days; P < 0.0001). Moreover, patients in the low risk group showed similar overall survival to Grade II patients (P = 0.1669), while the high risk group showed significant different to Grade IV (P = 0.0005) with similar trend. So based on the four-lncRNA, the anaplastic gliomas could be divided into grade II-like and grade IV-like groups. On the multivariate analysis, it showed the signature was an independent prognostic factor (P = 0.000). The expression of four lncRNAs in different grades showed that AGAP2-AS1, LINC01198 and MIR155HG were increased with tumor grade, while TPT1-AS1 was decreased. Knockdown of AGAP2-AS1 can inhibit the cell proliferation, migration and invasion, while increase the apoptosis cell rates in vitro. In conclusion, our results showed that the four-lncRNA signature has prognostic value for anaplastic glioma. Moreover, clinicians should conduct corresponding therapies to achieve best treatment with less side effects for two groups patients.


Classifying lower grade glioma cases according to whole genome gene expression.

  • Baoshi Chen‎ et al.
  • Oncotarget‎
  • 2016‎

To identify a gene-based signature as a novel prognostic model in lower grade gliomas.


DNA methylation mediated silencing of microRNA-874 is a promising diagnosis and prognostic marker in breast cancer.

  • Lei Zhang‎ et al.
  • Oncotarget‎
  • 2017‎

MicroRNA-874 (miR-874) is downregulated in several human cancers and has been suggested to be a tumor suppressor gene. However, the molecular mechanism of miR-874 downregulation in breast cancer has not been well elucidated. Here we aimed to study the aberrant hyper-methylation of CpG sites with the utility of miR-874 downreregulation in breast cancer and evaluate the clinical function of miR-874 as a prognostic marker. The miR-874 expressions in cells and tissues of two breast cancer lines were measured by real-time PCR. The DNA methylation status of the miR-874 promoter region in 19 pairs of breast cancer and adjacent normal samples was analyzed with Sequenom EpiTYPER MassArray. To evaluate whether miR-874 is a potential prognostic marker in breast cancer, we also explored the clinical long-time follow-up records from The Cancer Genome Atlas (TCGA). We found miR-874 expression was downregulated in 47 pairs of breast cancer tissues. Moreover, univariate and multivariate analysis revealed miR-874 expression may be a prognostic biomarker of overall survival in breast cancer patients. Preconditioning with 5-Aza-CdR in two cell lines elevated miR-874 expressions. The data from Sequenom EpiTYPER MassArray showed that DNA methylation of the promoter region of miR-874 was upregulated and accompanied by decreased miR-874 expression, which was further confirmed by TCGA. After comprehensive considerations, we think miR-874, which might be served as a prognostic biomarker, is mediated by DNA methylation.


Shp2 regulates migratory behavior and response to EGFR-TKIs through ERK1/2 pathway activation in non-small cell lung cancer cells.

  • Yu-Jing Sun‎ et al.
  • Oncotarget‎
  • 2017‎

In the clinical treatment of lung cancer, therapy failure is mainly caused by cancer metastasis and drug resistance. Here, we investigated whether the tyrosine phosphatase Shp2 is involved in the development of metastasis and drug resistance in non-small cell lung cancer (NSCLC). Shp2 was overexpressed in a subset of lung cancer tissues, and Shp2 knockdown in lung cancer cells inhibited cell proliferation and migration, downregulated c-Myc and fibronectin expression, and upregulated E-cadherin expression. In H1975 cells, which carry double mutations (L858R + T790M) in epidermal growth factor receptor (EGFR) that confers resistance toward the tyrosine kinase inhibitor gefitinib, Shp2 knockdown increased cellular sensitivity to gefitinib; conversely, in H292 cells, which express wild-type EGFR and are sensitive to gefitinib, Shp2 overexpression increased cellular resistance to gefitinib. Moreover, by overexpressing Shp2 or using U0126, a small-molecule inhibitor of extracellular signal-regulated kinase 1/2 (ERK1/2), we demonstrated that Shp2 inhibited E-cadherin expression and enhanced the expression of fibronectin and c-Myc through activation of the ERK1/2 pathway. Our findings reveal that Shp2 is overexpressed in clinical samples of NSCLC and that Shp2 knockdown reduces the proliferation and migration of lung cancer cells, and further suggest that co-inhibition of EGFR and Shp2 is an effective approach for overcoming EGFR T790M mutation acquired resistance to EGFR tyrosine kinase inhibitors (TKIs). Thus, we propose that Shp2 could serve as a new biomarker in the treatment of NSCLC.


One-bead one-compound combinatorial library derived targeting ligands for detection and treatment of oral squamous cancer.

  • Fan Yang‎ et al.
  • Oncotarget‎
  • 2019‎

Oral squamous cancers (OSC) are hallmarked by poor prognosis, delayed clinical detection, and a lack of defined, characteristic biomarkers. By screening combinatorial one-bead one-compound (OBOC) peptide libraries against oral squamous cancer cell lines, two cyclic peptide ligands, LLY12 and LLY13 were previously identified. These ligands are capable of specific binding to the oral cancer cell lines (MOK-101, HSC-3, SCC-4 and SCC-10a) but not non-cancerous keratinocytes, leukocytes, fibroblast, and endothelial cells. These two peptides were synthesized and evaluated for their binding property, cytotoxicity and cell permeability. In vitro studies indicate that both LLY12 and LLY13 were able to bind to oral cancer cells with high specificity but did not show any cytotoxicity against human keratinocytes. Biotinylated LLY13, in complex with streptavidin-alexa488 was taken up by live oral cancer cells, thus rendering it as an excellent candidate vehicle for efficient delivery of drug loaded-nanoparticles. In vivo and ex vivo near infra-red fluorescence imaging studies confirmed the in vivo targeting efficiency and specificity of LLY13 in oral cancer orthotopic murine xenograft model. In vivo studies also showed that LLY13 was able to accumulate in the OSC tumors and demarcate the tumor margins in orthotopic xenograft model. Together, our data supports LLY13 as a promising theranostic agent against OSC.


Waltonitone inhibits proliferation of hepatoma cells and tumorigenesis via FXR-miR-22-CCNA2 signaling pathway.

  • Fan Yang‎ et al.
  • Oncotarget‎
  • 2016‎

Waltonitone (WA), an ursane-type pentacyclic triterpene extracted from Gentiana waltonii Burkill, was recently appeared to exert anti-tumor effect. However, the biological underpinnings underlying the role of WA in hepatocellular carcinoma (HCC) cells have not been completely elucidated. Our previous report indicated that the FXR-regulated miR-22-CCNA2 pathway contributed to the progression and development of HCC. Besides, a wide spectrum of microRNAs (miRNAs) could be up- or down-regulated upon WA treatment, including miR-22. Hence, we aimed to determine whether WA inhibited HCC cell proliferation via the FXR-miR-22-CCNA2 axis. In this study, we observed a significant downregulation of FXR and miR-22, along with upregulation of CCNA2 in 80 paired tumors relative to adjacent normal tissues of HCC subjects, which were obtained from the available GEO database in NCBI (GSE22058). Furthermore, we validated the expression patterns of these three targets in another set of HCC samples and found the highly correlation within each other. Additionally, our data demonstrated that WA induced miR-22 and repressed CCNA2 in HCC cells, which contributed to the cell proliferation arrest. In addition, evidence suggested that either miR-22 silencing or FXR knockdown reversed the diminished CCNA2 expression as well as cell proliferation inhibition caused by WA treatment and WA inhibited tumor masses in vivo in a subcutaneous xenograft mouse model of HCC. Overall, our data indicated that WA inhibited HCC cell proliferation and tumorigenesis through miR-22-regulated CCNA2 repression, which was at least partially through FXR modulation.


Detection of phosphatidylserine-positive exosomes as a diagnostic marker for ovarian malignancies: a proof of concept study.

  • Jayanthi Lea‎ et al.
  • Oncotarget‎
  • 2017‎

There are no suitable screening modalities for ovarian carcinomas (OC) and repeated imaging and CA-125 levels are often needed to triage equivocal ovarian masses. Definitive diagnosis of malignancy, however, can only be established by histologic confirmation. Thus, the ability to detect OC at early stages is low, and most cases are diagnosed as advanced disease. Since tumor cells expose phosphatidylserine (PS) on their plasma membrane, we predicted that tumors might secrete PS-positive exosomes into the bloodstream that could be a surrogate biomarker for cancer. To address this, we developed a highly stringent ELISA that detects picogram quantities of PS in patient plasma. Blinded plasma from 34 suspect ovarian cancer patients and 10 healthy subjects were analyzed for the presence of PS-expressing vesicles. The nonparametric Wilcoxon rank sum test showed the malignant group had significantly higher PS values than the benign group (median 0.237 vs. -0.027, p=0.0001) and the malignant and benign groups had significantly higher PS values than the healthy group (median 0.237 vs -0.158, p<0.0001 and -0.027 vs -0.158, p=0.0002, respectively). ROC analysis of the predictive accuracy of PS-expressing exosomes/vesicles in predicting malignant against normal, benign against normal and malignant against benign revealed AUCs of 1.0, 0.95 and 0.911, respectively. This study provides proof-of-concept data that supports the high diagnostic power of PS detection in the blood of women with suspect ovarian malignancies.


Cytoplasmic TRAF4 contributes to the activation of p70s6k signaling pathway in breast cancer.

  • Hua-Yan Ren‎ et al.
  • Oncotarget‎
  • 2015‎

Tumor necrosis factor receptor associated factor 4 (TRAF4) is an important adaptor protein that plays a significant role in several signaling pathways. By studying the relationship between TRAF4 and 70 kDa ribosomal protein S6 kinase (p70s6k) in vivo, we demonstrated that cytoplasmic TRAF4 was correlated with the activation of p70s6k in breast cancer. Moreover, we found that cytoplasmic TRAF4 expression in breast cancer patients was significantly associated with a poor prognosis. To determine the exact mechanism, we analyzed the interaction between TRAF4 and p70s6k and identified the Zinc fingers domain of TRAF4 was responsible for their interaction in MCF7 cells. Furthermore, we found that activation of p70s6k/S6 signaling pathway by TRAF4 requires the mammalian target of rapamycin (mTOR) activity; TRAF4 acted as a sensitizer. Tumor necrosis factor receptor associated factor 2 (TRAF2), as a binding partner of TRAF4, could also promoted activation of p70s6k signaling via upregulating cytoplasm expression of TRAF4 and played a critical role in TNFa-induced activation of p70s6k/S6 pathway. Finally, we demonstrated p70s6k/S6 signaling pathway played an important role in the promoting function of TRAF4 on cell proliferation. In summary, our work suggests a new direction for understanding the oncogenic function of TRAF4 in breast cancer.


HPRT1 activity loss is associated with resistance to thiopurine in ALL.

  • Fan Yang‎ et al.
  • Oncotarget‎
  • 2018‎

Acute lymphoblastic leukemia (ALL) is an aggressive hematological tumor resulting from the malignant transformation of lymphoid progenitors. Thiopurine is a widely used drug in the maintaining treatment of ALL. After a period of chemotherapy, 20% of pediatric patients and over 50% of adult patients will relapse. To investigate the mechanisms of drug resistance in vitro, we established the thiopurine resistant cell lines Reh-6MPR (6-MP Resistant cell) and Reh-6TGR (6-TG Resistant cell) by stepwise selection of the ALL cell line Reh. Cell viability assay revealed that 6MPR and 6TGR cells were almost 1000-fold more resistant to thiopurine comparing with the control Reh cells, and thiopurine conversion was significantly impaired in the resistant cells. Mechanistically, a same novel hypoxanthine phosphoribosyl transferase 1 (HPRT1) mutation c.495_496insA (p.V165fs) was found by whole exome sequencing in both resistant cells. The HPRT1 mutation dramaticly decreased the production of [13C5,15N4]-IMP from [13C5,15N4]-hypoxanthine (HX), showed a loss-of-funciton mechanism. Notably, re-expression the wildtype HPRT1 in Reh-6MPR cell can reverse the drug resistance and thiopurine conversion in Reh-6MPR cells. These results highlight the importance of HPRT1's activity in thiopurine resistance.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: