Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 17 papers out of 17 papers

Single-stranded positive-sense RNA viruses generated in days using infectious subgenomic amplicons.

  • Fabien Aubry‎ et al.
  • The Journal of general virology‎
  • 2014‎

Reverse genetics is a key methodology for producing genetically modified RNA viruses and deciphering cellular and viral biological properties, but methods based on the preparation of plasmid-based complete viral genomes are laborious and unpredictable. Here, both wild-type and genetically modified infectious RNA viruses were generated in days using the newly described ISA (infectious-subgenomic-amplicons) method. This new versatile and simple procedure may enhance our capacity to obtain infectious RNA viruses from PCR-amplified genetic material.


Utilisation of ISA Reverse Genetics and Large-Scale Random Codon Re-Encoding to Produce Attenuated Strains of Tick-Borne Encephalitis Virus within Days.

  • Lauriane de Fabritus‎ et al.
  • PloS one‎
  • 2016‎

Large-scale codon re-encoding is a new method of attenuating RNA viruses. However, the use of infectious clones to generate attenuated viruses has inherent technical problems. We previously developed a bacterium-free reverse genetics protocol, designated ISA, and now combined it with large-scale random codon-re-encoding method to produce attenuated tick-borne encephalitis virus (TBEV), a pathogenic flavivirus which causes febrile illness and encephalitis in humans. We produced wild-type (WT) and two re-encoded TBEVs, containing 273 or 273+284 synonymous mutations in the NS5 and NS5+NS3 coding regions respectively. Both re-encoded viruses were attenuated when compared with WT virus using a laboratory mouse model and the relative level of attenuation increased with the degree of re-encoding. Moreover, all infected animals produced neutralizing antibodies. This novel, rapid and efficient approach to engineering attenuated viruses could potentially expedite the development of safe and effective new-generation live attenuated vaccines.


Live Zika virus chimeric vaccine candidate based on a yellow fever 17-D attenuated backbone.

  • Franck Touret‎ et al.
  • Emerging microbes & infections‎
  • 2018‎

Zika virus (ZIKV) has recently become dispersed throughout the tropics and sub-tropics, causing epidemics associated with congenital disease and neurological complications. There is currently no commercial vaccine for ZIKV. In this study, we describe the initial development of a chimeric virus containing the prM/E proteins of a ZIKV epidemic strain incorporated into a yellow fever 17-D attenuated backbone. Using the versatile and rapid ISA (Infectious Subgenomic Amplicons) reverse genetics method, we compared different constructs and confirmed the need to modify the cleavage site between the pre-peptide and prM protein. Genotypic characterization of the chimeras indicated that the emergence of compensatory mutations in the E protein was required to restore viral replicative fitness. Using an immunocompromised mouse model, we demonstrated that mice infected with the chimeric virus produced levels of neutralizing antibodies that were close to those observed following infection with ZIKV. Furthermore, pre-immunized mice were protected against viscerotropic and neuroinvasive disease following challenge with a heterologous ZIKV strain. These data provide a sound basis for the future development of this ZIKV vaccine candidate.


Attenuation of tick-borne encephalitis virus using large-scale random codon re-encoding.

  • Lauriane de Fabritus‎ et al.
  • PLoS pathogens‎
  • 2015‎

Large-scale codon re-encoding (i.e. introduction of a large number of synonymous mutations) is a novel method of generating attenuated viruses. Here, it was applied to the pathogenic flavivirus, tick-borne encephalitis virus (TBEV) which causes febrile illness and encephalitis in humans in forested regions of Europe and Asia. Using an infectious clone of the Oshima 5-10 strain ("wild-type virus"), a cassette of 1.4kb located in the NS5 coding region, was modified by randomly introducing 273 synonymous mutations ("re-encoded virus"). Whilst the in cellulo replicative fitness of the re-encoded virus was only slightly reduced, the re-encoded virus displayed an attenuated phenotype in a laboratory mouse model of non-lethal encephalitis. Following intra-peritoneal inoculation of either 2.105 or 2.106 TCID50 of virus, the frequency of viraemia, neurovirulence (measured using weight loss and appearance of symptoms) and neuroinvasiveness (detection of virus in the brain) were significantly decreased when compared with the wild-type virus. Mice infected by wild-type or re-encoded viruses produced comparable amounts of neutralising antibodies and results of challenge experiments demonstrated that mice previously infected with the re-encoded virus were protected against subsequent infection by the wild-type virus. This constitutes evidence that a mammalian species can be protected against infection by a virulent wild-type positive-stranded RNA virus following immunisation with a derived randomly re-encoded strain. Our results demonstrate that random codon re-encoding is potentially a simple and effective method of generating live-attenuated vaccine candidates against pathogenic flaviviruses.


New reverse genetics and transfection methods to rescue arboviruses in mosquito cells.

  • Thérèse Atieh‎ et al.
  • Scientific reports‎
  • 2017‎

Reverse genetics is a critical tool to decrypt the biological properties of arboviruses. However, whilst reverse genetics methods have been usually applied to vertebrate cells, their use in insect cells remains uncommon due to the conjunction of laborious molecular biology techniques and of specific difficulties surrounding the transfection of such cells. To leverage reverse genetics studies in both vertebrate and mosquito cells, we designed an improved DNA transfection protocol for insect cells and then demonstrated that the simple and flexible ISA (Infectious Subgenomic Amplicons) reverse-genetics method can be efficiently applied to both mammalian and mosquito cells to generate in days recombinant infectious positive-stranded RNA viruses belonging to genera Flavivirus (Japanese encephalitis, Yellow fever, West Nile and Zika viruses) and Alphavirus (Chikungunya virus). This method represents an effective option to potentially overcome technological issues related to the study of arboviruses.


Absence of transmission of vYF next generation Yellow Fever vaccine in mosquitoes.

  • Rachel Bellone‎ et al.
  • PLoS neglected tropical diseases‎
  • 2022‎

One of the most effective vaccines against an arbovirus is the YFV-17D live-attenuated vaccine developed in 1937 against Yellow Fever (YF). This vaccine replicates poorly in mosquitoes and consequently, is not transmitted by vectors. Vaccine shortages, mainly due to constrained productions based on pathogen-free embryonated eggs, led Sanofi to move towards alternative methods based on a state-of-the-art process using continuous cell line cultures in bioreactor. vYF-247 is a next-generation live-attenuated vaccine candidate based on 17D adapted to grow in serum-free Vero cells. For the development of a new vaccine, WHO recommends to document infectivity and replication in mosquitoes. Here we infected Aedes aegypti and Aedes albopictus mosquitoes with vYF-247 vaccine compared first to the YF-17D-204 reference Sanofi vaccines (Stamaril and YF-VAX) and a clinical human isolate S-79, provided in a blood meal at a titer of 6.5 Log ffu/mL and secondly, to the clinical isolate only at an increased titer of 7.5 Log ffu/mL. At different days post-infection, virus replication, dissemination and transmission were evaluated by quantifying viral particles in mosquito abdomen, head and thorax or saliva, respectively. Although comparison of vYF-247 to reference vaccines could not be completed to yield significant results, we showed that vYF-247 was not transmitted by both Aedes species, either laboratory strains or field-collected populations, compared to clinical strain S-79 at the highest inoculation dose. Combined with the undetectable to low level viremia detected in vaccinees, transmission of the vYF-247 vaccine by mosquitoes is highly unlikely.


Cell-Fusing Agent Virus Reduces Arbovirus Dissemination in Aedes aegypti Mosquitoes In Vivo.

  • Artem Baidaliuk‎ et al.
  • Journal of virology‎
  • 2019‎

Aedes aegypti mosquitoes are the main vectors of arthropod-borne viruses (arboviruses) of public health significance, such as the flaviviruses dengue virus (DENV) and Zika virus (ZIKV). Mosquitoes are also the natural hosts of a wide range of viruses that are insect specific, raising the question of their influence on arbovirus transmission in nature. Cell-fusing agent virus (CFAV) was the first described insect-specific flavivirus, initially discovered in an A. aegypti cell line and subsequently detected in natural A. aegypti populations. It was recently shown that DENV and the CFAV strain isolated from the A. aegypti cell line have mutually beneficial interactions in mosquito cells in culture. However, whether natural strains of CFAV and DENV interact in live mosquitoes is unknown. Using a wild-type CFAV isolate recently derived from Thai A. aegypti mosquitoes, we found that CFAV negatively interferes with both DENV type 1 and ZIKV in vitro and in vivo For both arboviruses, prior infection by CFAV reduced the dissemination titer in mosquito head tissues. Our results indicate that the interactions observed between arboviruses and the CFAV strain derived from the cell line might not be a relevant model of the viral interference that we observed in vivo Overall, our study supports the hypothesis that insect-specific flaviviruses may contribute to reduce the transmission of human-pathogenic flaviviruses.IMPORTANCE The mosquito Aedes aegypti carries several arthropod-borne viruses (arboviruses) that are pathogenic to humans, including dengue and Zika viruses. Interestingly, A. aegypti is also naturally infected with insect-only viruses, such as cell-fusing agent virus. Although interactions between cell-fusing agent virus and dengue virus have been documented in mosquito cells in culture, whether wild strains of cell-fusing agent virus interfere with arbovirus transmission by live mosquitoes was unknown. We used an experimental approach to demonstrate that cell-fusing agent virus infection reduces the propagation of dengue and Zika viruses in A. aegypti mosquitoes. These results support the idea that insect-only viruses in nature can modulate the ability of mosquitoes to carry arboviruses of medical significance and that they could possibly be manipulated to reduce arbovirus transmission.


"ISA-Lation" of Single-Stranded Positive-Sense RNA Viruses from Non-Infectious Clinical/Animal Samples.

  • Fabien Aubry‎ et al.
  • PloS one‎
  • 2015‎

Isolation of viral pathogens from clinical and/or animal samples has traditionally relied on either cell cultures or laboratory animal model systems. However, virus viability is notoriously susceptible to adverse conditions that may include inappropriate procedures for sample collection, storage temperature, support media and transportation. Using our recently described ISA method, we have developed a novel procedure to isolate infectious single-stranded positive-sense RNA viruses from clinical or animal samples. This approach, that we have now called "ISA-lation", exploits the capacity of viral cDNA subgenomic fragments to re-assemble and produce infectious viral RNA in susceptible cells. Here, it was successfully used to rescue enterovirus, Chikungunya and Tick-borne encephalitis viruses from a variety of inactivated animal and human samples. ISA-lation represents an effective option to rescue infectious virus from clinical and/or animal samples that may have deteriorated during the collection and storage period, but also potentially overcomes logistic and administrative difficulties generated when complying with current health and safety and biosecurity guidelines associated with shipment of infectious viral material.


Experimental adaptation of dengue virus 1 to Aedes albopictus mosquitoes by in vivo selection.

  • Rachel Bellone‎ et al.
  • Scientific reports‎
  • 2020‎

In most of the world, Dengue virus (DENV) is mainly transmitted by the mosquito Aedes aegypti while in Europe, Aedes albopictus is responsible for human DENV cases since 2010. Identifying mutations that make DENV more competent for transmission by Ae. albopictus will help to predict emergence of epidemic strains. Ten serial passages in vivo in Ae. albopictus led to select DENV-1 strains with greater infectivity for this vector in vivo and in cultured mosquito cells. These changes were mediated by multiple adaptive mutations in the virus genome, including a mutation at position 10,418 in the DENV 3'UTR within an RNA stem-loop structure involved in subgenomic flavivirus RNA production. Using reverse genetics, we showed that the 10,418 mutation alone does not confer a detectable increase in transmission efficiency in vivo. These results reveal the complex adaptive landscape of DENV transmission by mosquitoes and emphasize the role of epistasis in shaping evolutionary trajectories of DENV variants.


SuPReMe: a rapid reverse genetics method to generate clonal populations of recombinant RNA viruses.

  • Jean-Sélim Driouich‎ et al.
  • Emerging microbes & infections‎
  • 2018‎

Reverse genetics systems enable the manipulation of viral genomes and are proving to be essential for studying RNA viruses. Methods for generating clonal virus populations are particularly useful for studying the impact of genomic modifications on viral properties. Here, by exploiting a chikungunya virus model, we compare viral populations and their replicative fitness when generated using either the rapid and user-friendly PCR-based ISA (Infectious Subgenomic Amplicons) method or classical infectious clone technology. As anticipated, the ISA method resulted in greater genetic diversity of the viral populations, but no significant difference in viral fitness in vitro was observed. On the basis of these results, a new ISA-derived reverse genetics procedure was developed. This method, designated 'SuPReMe' (Subgenomic Plasmids Recombination Method), in which digested plasmids containing subgenomic DNA fragments were directly transfected into permissive cells, retains the following major advantages of the ISA method: it is rapid, flexible and does not require the cloning of complete genomes. Moreover, SuPReMe has been shown to produce virus populations with genetic diversity and replicative fitness similar to those obtained using conventional infectious clone technology. SuPReMe, therefore, represents an effective and promising option for the rapid generation of clonal recombinant populations of single-stranded positive-sense RNA viruses.


Recent African strains of Zika virus display higher transmissibility and fetal pathogenicity than Asian strains.

  • Fabien Aubry‎ et al.
  • Nature communications‎
  • 2021‎

The global emergence of Zika virus (ZIKV) revealed the unprecedented ability for a mosquito-borne virus to cause congenital birth defects. A puzzling aspect of ZIKV emergence is that all human outbreaks and birth defects to date have been exclusively associated with the Asian ZIKV lineage, despite a growing body of laboratory evidence pointing towards higher transmissibility and pathogenicity of the African ZIKV lineage. Whether this apparent paradox reflects the use of relatively old African ZIKV strains in most laboratory studies is unclear. Here, we experimentally compare seven low-passage ZIKV strains representing the recently circulating viral genetic diversity. We find that recent African ZIKV strains display higher transmissibility in mosquitoes and higher lethality in both adult and fetal mice than their Asian counterparts. We emphasize the high epidemic potential of African ZIKV strains and suggest that they could more easily go unnoticed by public health surveillance systems than Asian strains due to their propensity to cause fetal loss rather than birth defects.


Potential role of vector-mediated natural selection in dengue virus genotype/lineage replacements in two epidemiologically contrasted settings.

  • Olivia O'Connor‎ et al.
  • Emerging microbes & infections‎
  • 2021‎

Dengue virus (DENV) evolutionary dynamics are characterized by frequent DENV genotype/lineage replacements, potentially associated with changes in disease severity and human immunity. New Caledonia (NC) and Cambodia, two contrasted epidemiological settings, respectively experienced a DENV-1 genotype IV to I replacement in 2012 and a DENV-1 genotype I lineage 3-4 replacement in 2005-2007, both followed by a massive dengue outbreak. However, their underlying evolutionary drivers have not been elucidated. Here, we tested the hypothesis that these genotype/lineage switches reflected a higher transmission fitness of the replacing DENV genotype/lineage in the mosquito vector using in vivo competition experiments. For this purpose, field-derived Aedes aegypti from NC and Cambodia were orally challenged with epidemiologically relevant pairs of four DENV-1 genotype I and IV strains from NC or four DENV-1 genotype I lineage 3 and 4 strains from Cambodia, respectively. The relative transmission fitness of each DENV-1 genotype/lineage was measured by quantitative RT-PCR for infection, dissemination, and transmission rates. Results showed a clear transmission fitness advantage of the replacing DENV-1 genotype I from NC within the vector. A similar but more subtle pattern was observed for the DENV-1 lineage 4 replacement in Cambodia. Our results support the hypothesis that vector-driven selection contributed to the DENV-1 genotype/lineage replacements in these two contrasted epidemiological settings, and reinforce the idea that natural selection taking place within the mosquito vector plays an important role in DENV short-term evolutionary dynamics.


The JAK/STAT3 pathway is a common inducer of astrocyte reactivity in Alzheimer's and Huntington's diseases.

  • Lucile Ben Haim‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2015‎

Astrocyte reactivity is a hallmark of neurodegenerative diseases (ND), but its effects on disease outcomes remain highly debated. Elucidation of the signaling cascades inducing reactivity in astrocytes during ND would help characterize the function of these cells and identify novel molecular targets to modulate disease progression. The Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) pathway is associated with reactive astrocytes in models of acute injury, but it is unknown whether this pathway is directly responsible for astrocyte reactivity in progressive pathological conditions such as ND. In this study, we examined whether the JAK/STAT3 pathway promotes astrocyte reactivity in several animal models of ND. The JAK/STAT3 pathway was activated in reactive astrocytes in two transgenic mouse models of Alzheimer's disease and in a mouse and a nonhuman primate lentiviral vector-based model of Huntington's disease (HD). To determine whether this cascade was instrumental for astrocyte reactivity, we used a lentiviral vector that specifically targets astrocytes in vivo to overexpress the endogenous inhibitor of the JAK/STAT3 pathway [suppressor of cytokine signaling 3 (SOCS3)]. SOCS3 significantly inhibited this pathway in astrocytes, prevented astrocyte reactivity, and decreased microglial activation in models of both diseases. Inhibition of the JAK/STAT3 pathway within reactive astrocytes also increased the number of huntingtin aggregates, a neuropathological hallmark of HD, but did not influence neuronal death. Our data demonstrate that the JAK/STAT3 pathway is a common mediator of astrocyte reactivity that is highly conserved between disease states, species, and brain regions. This universal signaling cascade represents a potent target to study the role of reactive astrocytes in ND.


Haiku: New paradigm for the reverse genetics of emerging RNA viruses.

  • Thérèse Atieh‎ et al.
  • PloS one‎
  • 2018‎

Reverse genetics is key technology for producing wild-type and genetically modified viruses. The ISA (Infectious Subgenomic Amplicons) method is a recent versatile and user-friendly reverse genetics method to rescue RNA viruses. The main constraint of its canonic protocol was the requirement to produce (e.g., by DNA synthesis or fusion PCR) 5' and 3' modified genomic fragments encompassing the human cytomegalovirus promoter (pCMV) and the hepatitis delta virus ribozyme/simian virus 40 polyadenylation signal (HDR/SV40pA), respectively. Here, we propose the ultimately simplified "Haiku" designs in which terminal pCMV and HDR/SV40pA sequences are provided as additional separate DNA amplicons. This improved procedure was successfully applied to the rescue of a wide range of viruses belonging to genera Flavivirus, Alphavirus and Enterovirus in mosquito or mammalian cells using only standard PCR amplification techniques and starting from a variety of original materials including viral RNAs extracted from cell supernatant media or animal samples. We also demonstrate that, in specific experimental conditions, the presence of the HDR/SV40pA is not necessary to rescue the targeted viruses. These ultimately simplified "Haiku" designs provide an even more simple, rapid, versatile and cost-effective tool to rescue RNA viruses since only generation of overlapping amplicons encompassing the entire viral genome is now required to generate infectious virus. This new approach may completely modify our capacity to obtain infectious RNA viruses.


Random codon re-encoding induces stable reduction of replicative fitness of Chikungunya virus in primate and mosquito cells.

  • Antoine Nougairede‎ et al.
  • PLoS pathogens‎
  • 2013‎

Large-scale codon re-encoding represents a powerful method of attenuating viruses to generate safe and cost-effective vaccines. In contrast to specific approaches of codon re-encoding which modify genome-scale properties, we evaluated the effects of random codon re-encoding on the re-emerging human pathogen Chikungunya virus (CHIKV), and assessed the stability of the resultant viruses during serial in cellulo passage. Using different combinations of three 1.4 kb randomly re-encoded regions located throughout the CHIKV genome six codon re-encoded viruses were obtained. Introducing a large number of slightly deleterious synonymous mutations reduced the replicative fitness of CHIKV in both primate and arthropod cells, demonstrating the impact of synonymous mutations on fitness. Decrease of replicative fitness correlated with the extent of re-encoding, an observation that may assist in the modulation of viral attenuation. The wild-type and two re-encoded viruses were passaged 50 times either in primate or insect cells, or in each cell line alternately. These viruses were analyzed using detailed fitness assays, complete genome sequences and the analysis of intra-population genetic diversity. The response to codon re-encoding and adaptation to culture conditions occurred simultaneously, resulting in significant replicative fitness increases for both re-encoded and wild type viruses. Importantly, however, the most re-encoded virus failed to recover its replicative fitness. Evolution of these viruses in response to codon re-encoding was largely characterized by the emergence of both synonymous and non-synonymous mutations, sometimes located in genomic regions other than those involving re-encoding, and multiple convergent and compensatory mutations. However, there was a striking absence of codon reversion (<0.4%). Finally, multiple mutations were rapidly fixed in primate cells, whereas mosquito cells acted as a brake on evolution. In conclusion, random codon re-encoding provides important information on the evolution and genetic stability of CHIKV viruses and could be exploited to develop a safe, live attenuated CHIKV vaccine.


Zika virus threshold determines transmission by European Aedes albopictus mosquitoes.

  • Marie Vazeille‎ et al.
  • Emerging microbes & infections‎
  • 2019‎

Since its emergence in Yap Island in 2007, Zika virus (ZIKV) has affected all continents except Europe. Despite the hundreds of cases imported to European countries from ZIKV-infested regions, no local cases have been reported in localities where the ZIKV-competent mosquito Aedes albopictus is well established. Here we analysed the vector competence of European Aedes (aegypti and albopictus) mosquitoes to different genotypes of ZIKV. We demonstrate that Ae. albopictus from France was less susceptible to the Asian ZIKV than to the African ZIKV. Critically we show that effective crossing of anatomical barriers (midgut and salivary glands) after an infectious blood meal depends on a viral load threshold to trigger: (i) viral dissemination from the midgut to infect mosquito internal organs and (ii) viral transmission from the saliva to infect a vertebrate host. A viral load in body ≥4800 viral copies triggered dissemination and ≥12,000 viral copies set out transmission. Only 27.3% and 18.2% of Ae. albopictus Montpellier mosquitoes meet respectively these two criteria. Collectively, these compelling results stress the poor ability of Ae. albopictus to sustain a local transmission of ZIKV in Europe and provide a promising tool to evaluate the risk of ZIKV transmission in future outbreaks.


Vector Specificity of Arbovirus Transmission.

  • Marine Viglietta‎ et al.
  • Frontiers in microbiology‎
  • 2021‎

More than 25% of human infectious diseases are vector-borne diseases (VBDs). These diseases, caused by pathogens shared between animals and humans, are a growing threat to global health with more than 2.5 million annual deaths. Mosquitoes and ticks are the main vectors of arboviruses including flaviviruses, which greatly affect humans. However, all tick or mosquito species are not able to transmit all viruses, suggesting important molecular mechanisms regulating viral infection, dissemination, and transmission by vectors. Despite the large distribution of arthropods (mosquitoes and ticks) and arboviruses, only a few pairings of arthropods (family, genus, and population) and viruses (family, genus, and genotype) successfully transmit. Here, we review the factors that might limit pathogen transmission: internal (vector genetics, immune responses, microbiome including insect-specific viruses, and coinfections) and external, either biotic (adult and larvae nutrition) or abiotic (temperature, chemicals, and altitude). This review will demonstrate the dynamic nature and complexity of virus-vector interactions to help in designing appropriate practices in surveillance and prevention to reduce VBD threats.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: