Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 8 papers out of 8 papers

Performance of the Omnipod Personalized Model Predictive Control Algorithm with Meal Bolus Challenges in Adults with Type 1 Diabetes.

  • Bruce A Buckingham‎ et al.
  • Diabetes technology & therapeutics‎
  • 2018‎

This study assessed the safety and performance of the Omnipod® personalized model predictive control (MPC) algorithm using an investigational device in adults with type 1 diabetes in response to overestimated and missed meal boluses and extended boluses for high-fat meals.


International Consensus on Use of Continuous Glucose Monitoring.

  • Thomas Danne‎ et al.
  • Diabetes care‎
  • 2017‎

Measurement of glycated hemoglobin (HbA1c) has been the traditional method for assessing glycemic control. However, it does not reflect intra- and interday glycemic excursions that may lead to acute events (such as hypoglycemia) or postprandial hyperglycemia, which have been linked to both microvascular and macrovascular complications. Continuous glucose monitoring (CGM), either from real-time use (rtCGM) or intermittently viewed (iCGM), addresses many of the limitations inherent in HbA1c testing and self-monitoring of blood glucose. Although both provide the means to move beyond the HbA1c measurement as the sole marker of glycemic control, standardized metrics for analyzing CGM data are lacking. Moreover, clear criteria for matching people with diabetes to the most appropriate glucose monitoring methodologies, as well as standardized advice about how best to use the new information they provide, have yet to be established. In February 2017, the Advanced Technologies & Treatments for Diabetes (ATTD) Congress convened an international panel of physicians, researchers, and individuals with diabetes who are expert in CGM technologies to address these issues. This article summarizes the ATTD consensus recommendations and represents the current understanding of how CGM results can affect outcomes.


At-Home Use of a Pregnancy-Specific Zone-MPC Closed-Loop System for Pregnancies Complicated by Type 1 Diabetes: A Single-Arm, Observational Multicenter Study.

  • Carol J Levy‎ et al.
  • Diabetes care‎
  • 2023‎

There are no commercially available hybrid closed-loop insulin delivery systems customized to achieve pregnancy-specific glucose targets in the U.S. This study aimed to evaluate the feasibility and performance of at-home use of a zone model predictive controller-based closed-loop insulin delivery system customized for pregnancies complicated by type 1 diabetes (CLC-P).


Microneedle Aptamer-Based Sensors for Continuous, Real-Time Therapeutic Drug Monitoring.

  • Yao Wu‎ et al.
  • Analytical chemistry‎
  • 2022‎

The ability to continuously monitor the concentration of specific molecules in the body is a long-sought goal of biomedical research. For this purpose, interstitial fluid (ISF) was proposed as the ideal target biofluid because its composition can rapidly equilibrate with that of systemic blood, allowing the assessment of molecular concentrations that reflect full-body physiology. In the past, continuous monitoring in ISF was enabled by microneedle sensor arrays. Yet, benchmark microneedle sensors can only detect molecules that undergo redox reactions, which limits the ability to sense metabolites, biomarkers, and therapeutics that are not redox-active. To overcome this barrier, here, we expand the scope of these devices by demonstrating the first use of microneedle-supported electrochemical, aptamer-based (E-AB) sensors. This platform achieves molecular recognition based on affinity interactions, vastly expanding the scope of molecules that can be sensed. We report the fabrication of microneedle E-AB sensor arrays and a method to regenerate them for multiple uses. In addition, we demonstrate continuous molecular measurements using these sensors in flow systems in vitro using single and multiplexed microneedle array configurations. Translation of the platform to in vivo measurements is possible as we demonstrate with a first E-AB measurement in the ISF of a rodent. The encouraging results reported in this work should serve as the basis for future translation of microneedle E-AB sensor arrays to biomedical research in preclinical animal models.


Safety of outpatient closed-loop control: first randomized crossover trials of a wearable artificial pancreas.

  • Boris P Kovatchev‎ et al.
  • Diabetes care‎
  • 2014‎

We estimate the effect size of hypoglycemia risk reduction on closed-loop control (CLC) versus open-loop (OL) sensor-augmented insulin pump therapy in supervised outpatient setting.


Clinical evaluation of a personalized artificial pancreas.

  • Eyal Dassau‎ et al.
  • Diabetes care‎
  • 2013‎

An artificial pancreas (AP) that automatically regulates blood glucose would greatly improve the lives of individuals with diabetes. Such a device would prevent hypo- and hyperglycemia along with associated long- and short-term complications as well as ease some of the day-to-day burden of frequent blood glucose measurements and insulin administration.


Twelve-Week 24/7 Ambulatory Artificial Pancreas With Weekly Adaptation of Insulin Delivery Settings: Effect on Hemoglobin A1c and Hypoglycemia.

  • Eyal Dassau‎ et al.
  • Diabetes care‎
  • 2017‎

Artificial pancreas (AP) systems are best positioned for optimal treatment of type 1 diabetes (T1D) and are currently being tested in outpatient clinical trials. Our consortium developed and tested a novel adaptive AP in an outpatient, single-arm, uncontrolled multicenter clinical trial lasting 12 weeks.


Pilot studies of wearable outpatient artificial pancreas in type 1 diabetes.

  • Claudio Cobelli‎ et al.
  • Diabetes care‎
  • 2012‎

No abstract available


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: