Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 11 papers out of 11 papers

Novel quinolinonyl diketo acid derivatives as HIV-1 integrase inhibitors: design, synthesis, and biological activities.

  • Roberto Di Santo‎ et al.
  • Journal of medicinal chemistry‎
  • 2008‎

Novel quinolinonyl diketo acids were designed to obtain integrase (IN) inhibitors selectively active against the strand transfer (ST) step of the HIV integration process. Those new compounds are characterized by a single aryl diketo acid (DKA) chain in comparison to 4, a bifunctional diketo acid reported by our group as an anti-IN agent highly potent against both the 3'-processing and ST steps. Compound 6d was the most potent derivative in IN enzyme assays, while 6i showed the highest potency against HIV-1 in acutely infected cells. The selective inhibition of ST suggested the newly designed monofunctional DKAs bind the IN-DNA acceptor site without affecting the DNA donor site.


Identification of the first inhibitor of the GBP1:PIM1 interaction. Implications for the development of a new class of anticancer agents against paclitaxel resistant cancer cells.

  • Mirko Andreoli‎ et al.
  • Journal of medicinal chemistry‎
  • 2014‎

Class III β-tubulin plays a prominent role in the development of drug resistance to paclitaxel by allowing the incorporation of the GBP1 GTPase into microtubules. Once in the cytoskeleton, GBP1 binds to prosurvival kinases such as PIM1 and initiates a signaling pathway that induces resistance to paclitaxel. Therefore, the inhibition of the GBP1:PIM1 interaction could potentially revert resistance to paclitaxel. A panel of 44 4-azapodophyllotoxin derivatives was screened in the NCI-60 cell panel. The result is that 31 are active and the comparative analysis demonstrated specific activity in paclitaxel-resistant cells. Using surface plasmon resonance, we were able to prove that NSC756093 is a potent in vitro inhibitor of the GBP1:PIM1 interaction and that this property is maintained in vivo in ovarian cancer cells resistant to paclitaxel. Through bioinformatics, molecular modeling, and mutagenesis studies, we identified the putative NSC756093 binding site at the interface between the helical and the LG domain of GBP1. According to our results by binding to this site, the NSC756093 compound is able to stabilize a conformation of GBP1 not suitable for binding to PIM1.


Characterization of 2,4-Diamino-6-oxo-1,6-dihydropyrimidin-5-yl Ureido Based Inhibitors of Trypanosoma brucei FolD and Testing for Antiparasitic Activity.

  • Thomas C Eadsforth‎ et al.
  • Journal of medicinal chemistry‎
  • 2015‎

The bifunctional enzyme N(5),N(10)-methylenetetrahydrofolate dehydrogenase/cyclo hydrolase (FolD) is essential for growth in Trypanosomatidae. We sought to develop inhibitors of Trypanosoma brucei FolD (TbFolD) as potential antiparasitic agents. Compound 2 was synthesized, and the molecular structure was unequivocally assigned through X-ray crystallography of the intermediate compound 3. Compound 2 showed an IC50 of 2.2 μM, against TbFolD and displayed antiparasitic activity against T. brucei (IC50 49 μM). Using compound 2, we were able to obtain the first X-ray structure of TbFolD in the presence of NADP(+) and the inhibitor, which then guided the rational design of a new series of potent TbFolD inhibitors.


Selective non-nucleoside inhibitors of human DNA methyltransferases active in cancer including in cancer stem cells.

  • Sergio Valente‎ et al.
  • Journal of medicinal chemistry‎
  • 2014‎

DNA methyltransferases (DNMTs) are important enzymes involved in epigenetic control of gene expression and represent valuable targets in cancer chemotherapy. A number of nucleoside DNMT inhibitors (DNMTi) have been studied in cancer, including in cancer stem cells, and two of them (azacytidine and decitabine) have been approved for treatment of myelodysplastic syndromes. However, only a few non-nucleoside DNMTi have been identified so far, and even fewer have been validated in cancer. Through a process of hit-to-lead optimization, we report here the discovery of compound 5 as a potent non-nucleoside DNMTi that is also selective toward other AdoMet-dependent protein methyltransferases. Compound 5 was potent at single-digit micromolar concentrations against a panel of cancer cells and was less toxic in peripheral blood mononuclear cells than two other compounds tested. In mouse medulloblastoma stem cells, 5 inhibited cell growth, whereas related compound 2 showed high cell differentiation. To the best of our knowledge, 2 and 5 are the first non-nucleoside DNMTi tested in a cancer stem cell line.


Halting the Spread of Herpes Simplex Virus-1: The Discovery of an Effective Dual αvβ6/αvβ8 Integrin Ligand.

  • Stefano Tomassi‎ et al.
  • Journal of medicinal chemistry‎
  • 2021‎

Over recent years, αvβ6 and αvβ8 Arg-Gly-Asp (RGD) integrins have risen to prominence as interchangeable co-receptors for the cellular entry of herpes simplex virus-1 (HSV-1). In fact, the employment of subtype-specific integrin-neutralizing antibodies or gene-silencing siRNAs has emerged as a valuable strategy for impairing HSV infectivity. Here, we shift the focus to a more affordable pharmaceutical approach based on small RGD-containing cyclic pentapeptides. Starting from our recently developed αvβ6-preferential peptide [RGD-Chg-E]-CONH2 (1), a small library of N-methylated derivatives (2-6) was indeed synthesized in the attempt to increase its affinity toward αvβ8. Among the novel compounds, [RGD-Chg-(NMe)E]-CONH2 (6) turned out to be a potent αvβ6/αvβ8 binder and a promising inhibitor of HSV entry through an integrin-dependent mechanism. Furthermore, the renewed selectivity profile of 6 was fully rationalized by a NMR/molecular modeling combined approach, providing novel valuable hints for the design of RGD integrin ligands with the desired specificity profile.


A novel cell-permeable, selective, and noncompetitive inhibitor of KAT3 histone acetyltransferases from a combined molecular pruning/classical isosterism approach.

  • Ciro Milite‎ et al.
  • Journal of medicinal chemistry‎
  • 2015‎

Selective inhibitors of the two paralogue KAT3 acetyltransferases (CBP and p300) may serve not only as precious chemical tools to investigate the role of these enzymes in physiopathological mechanisms but also as lead structures for the development of further antitumor agents. After the application of a molecular pruning approach to the hardly optimizable and not very cell-permeable garcinol core structure, we prepared many analogues that were screened for their inhibitory effects using biochemical and biophysical (SPR) assays. Further optimization led to the discovery of the benzylidenebarbituric acid derivative 7h (EML425) as a potent and selective reversible inhibitor of CBP/p300, noncompetitive versus both acetyl-CoA and a histone H3 peptide, and endowed with good cell permeability. Furthermore, in human leukemia U937 cells, it induced a marked and time-dependent reduction in the acetylation of lysine H4K5 and H3K9, a marked arrest in the G0/G1 phase and a significant increase in the hypodiploid nuclei percentage.


Structure-based lead optimization and biological evaluation of BAX direct activators as novel potential anticancer agents.

  • Mariano Stornaiuolo‎ et al.
  • Journal of medicinal chemistry‎
  • 2015‎

The first direct activator of BAX, a pro-apoptotic member of the BCL-2 family, has been recently identified. Herein, a structure-based lead optimization turned out into a small series of analogues, where 8 is the most potent compound published so far. 8 was used as pharmacological tool to ascertain, for the first time, the anticancer potential of BAX direct activators and the obtained results would suggest that BAX direct activators are potential future anticancer drugs rather than venoms.


First-in-Class Cyclic Temporin L Analogue: Design, Synthesis, and Antimicrobial Assessment.

  • Rosa Bellavita‎ et al.
  • Journal of medicinal chemistry‎
  • 2021‎

The pharmacodynamic and pharmacokinetic properties of bioactive peptides can be modulated by introducing conformational constraints such as intramolecular macrocyclizations, which can involve either the backbone and/or side chains. Herein, we aimed at increasing the α-helicity content of temporin L, an isoform of an intriguing class of linear antimicrobial peptides (AMPs), endowed with a wide antimicrobial spectrum, by the employment of diverse side-chain tethering strategies, including lactam, 1,4-substituted [1,2,3]-triazole, hydrocarbon, and disulfide linkers. Our approach resulted in a library of cyclic temporin L analogues that were biologically assessed for their antimicrobial, cytotoxic, and antibiofilm activities, leading to the development of the first-in-class cyclic peptide related to this AMP family. Our results allowed us to expand the knowledge regarding the relationship between the α-helical character of temporin derivatives and their biological activity, paving the way for the development of improved antibiotic cyclic AMP analogues.


Quinolinonyl Non-Diketo Acid Derivatives as Inhibitors of HIV-1 Ribonuclease H and Polymerase Functions of Reverse Transcriptase.

  • Antonella Messore‎ et al.
  • Journal of medicinal chemistry‎
  • 2021‎

Novel anti-HIV agents are still needed to overcome resistance issues, in particular inhibitors acting against novel viral targets. The ribonuclease H (RNase H) function of the reverse transcriptase (RT) represents a validated and promising target, and no inhibitor has reached the clinical pipeline yet. Here, we present rationally designed non-diketo acid selective RNase H inhibitors (RHIs) based on the quinolinone scaffold starting from former dual integrase (IN)/RNase H quinolinonyl diketo acids. Several derivatives were synthesized and tested against RNase H and viral replication and found active at micromolar concentrations. Docking studies within the RNase H catalytic site, coupled with site-directed mutagenesis, and Mg2+ titration experiments demonstrated that our compounds coordinate the Mg2+ cofactor and interact with amino acids of the RNase H domain that are highly conserved among naïve and treatment-experienced patients. In general, the new inhibitors influenced also the polymerase activity of RT but were selective against RNase H vs the IN enzyme.


Monohydrazone Based G-Quadruplex Selective Ligands Induce DNA Damage and Genome Instability in Human Cancer Cells.

  • Jussara Amato‎ et al.
  • Journal of medicinal chemistry‎
  • 2020‎

Targeting G-quadruplex structures is currently viewed as a promising anticancer strategy. Searching for potent and selective G-quadruplex binders, here we describe a small series of new monohydrazone derivatives designed as analogues of a lead which was proved to stabilize G-quadruplex structures and increase R loop levels in human cancer cells. To investigate the G-quadruplex binding properties of the new molecules, in vitro biophysical studies were performed employing both telomeric and oncogene promoter G-quadruplex-forming sequences. The obtained results allowed the identification of a highly selective G-quadruplex ligand that, when studied in human cancer cells, proved to be able to stabilize both G-quadruplexes and R loops and showed a potent cell killing activity associated with the formation of micronuclei, a clear sign of genome instability.


Basic quinolinonyl diketo acid derivatives as inhibitors of HIV integrase and their activity against RNase H function of reverse transcriptase.

  • Roberta Costi‎ et al.
  • Journal of medicinal chemistry‎
  • 2014‎

A series of antiviral basic quinolinonyl diketo acid derivatives were developed as inhibitors of HIV-1 IN. Compounds 12d,f,i inhibited HIV-1 IN with IC50 values below 100 nM for strand transfer and showed a 2 order of magnitude selectivity over 3'-processing. These strand transfer selective inhibitors also inhibited HIV-1 RNase H with low micromolar potencies. Molecular modeling studies based on both the HIV-1 IN and RNase H catalytic core domains provided new structural insights for the future development of these compounds as dual HIV-1 IN and RNase H inhibitors.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: