Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 115 papers

Taurine induces proliferation of neural stem cells and synapse development in the developing mouse brain.

  • Mattu Chetana Shivaraj‎ et al.
  • PloS one‎
  • 2012‎

Taurine is a sulfur-containing amino acid present in high concentrations in mammalian tissues. It has been implicated in several processes involving brain development and neurotransmission. However, the role of taurine in hippocampal neurogenesis during brain development is still unknown. Here we show that taurine regulates neural progenitor cell (NPC) proliferation in the dentate gyrus of the developing brain as well as in cultured early postnatal (P5) hippocampal progenitor cells and hippocampal slices derived from P5 mice brains. Taurine increased cell proliferation without having a significant effect on neural differentiation both in cultured P5 NPCs as well as cultured hippocampal slices and in vivo. Expression level analysis of synaptic proteins revealed that taurine increases the expression of Synapsin 1 and PSD 95. We also found that taurine stimulates the phosphorylation of ERK1/2 indicating a possible role of the ERK pathway in mediating the changes that we observed, especially in proliferation. Taken together, our results demonstrate a role for taurine in neural stem/progenitor cell proliferation in developing brain and suggest the involvement of the ERK1/2 pathways in mediating these actions. Our study also shows that taurine influences the levels of proteins associated with synapse development. This is the first evidence showing the effect of taurine on early postnatal neuronal development using a combination of in vitro, ex-vivo and in vivo systems.


Involvement of endoplasmic reticulum stress response in orofacial inflammatory pain.

  • Eun Sun Yang‎ et al.
  • Experimental neurobiology‎
  • 2014‎

Endoplasmic reticulum (ER) stress is involved in many neurological diseases and inflammatory responses. Inflammatory mediators induce neuronal damage and trigger the neuropathic or inflammatory pain. But there is very little data on the role of the ER stress response in pain mechanisms. In this study, we explored whether the ER stress response is involved in orofacial inflammatory pain by using a complete Freund's adjuvant (CFA)-injected rat model. The thermal pain hypersensitivity increased significantly after CFA injection. We found that the protein and mRNA levels of ER stress response genes, GRP78/Bip and p-eIF2α, increased significantly in trigeminal ganglion (TG) of CFA-injected rats compared to control animals. In immunofluorescence analysis, a significant increase of GRP78 and p-eIF2α immunopositive neurons was observed in CFA-injected TG compared to control TG. When we administered an ER stress modulator, salubrinal, CFA-induced thermal pain hypersensitivity was temporally reduced. Thus, our study suggests that ER stress responses in TG neurons contribute to CFA-induced inflammatory pain, and may comprise an important molecular mechanism underlying the orofacial inflammatory pain pathway.


Kv1.2 mediates heterosynaptic modulation of direct cortical synaptic inputs in CA3 pyramidal cells.

  • Jung Ho Hyun‎ et al.
  • The Journal of physiology‎
  • 2015‎

We investigated the cellular mechanisms underlying mossy fibre-induced heterosynaptic long-term potentiation of perforant path (PP) inputs to CA3 pyramidal cells. Here we show that this heterosynaptic potentiation is mediated by downregulation of Kv1.2 channels. The downregulation of Kv1.2 preferentially enhanced PP-evoked EPSPs which occur at distal apical dendrites. Such enhancement of PP-EPSPs required activation of dendritic Na(+) channels, and its threshold was lowered by downregulation of Kv1.2. Our results may provide new insights into the long-standing question of how mossy fibre inputs constrain the CA3 network to sparsely represent direct cortical inputs.


Quantitative ultrastructural analysis of fibers expressing parvalbumin, calretinin, calbindin D-28k, stage specific embryonic antigen-4, and phosphorylated neurofilament 200 in the peripheral sensory root of the rat trigeminal ganglion.

  • Jin Young Bae‎ et al.
  • The Journal of comparative neurology‎
  • 2018‎

Parvalbumin (PV), calretinin (CR), calbindin D-28k (CB), stage specific embryonic antigen-4 (SSEA4), and phosphorylated neurofilament 200 (pNF200) have been commonly used as markers for primary afferent neurons with large myelinated (A) fibers but detailed information on the expression of these markers in specific primary afferent fiber types is still lacking. We here examined the fibers that express PV, CR, CB, SSEA4, and pNF200 in the trigeminal ganglion and its peripheral sensory root by light- and electron-microscopic immunohistochemistry and quantitative analysis. We found that all CR-immunopositive (+), CB+, and SSEA4+ fibers and virtually all (98.8%) PV+ fibers were myelinated, most CR+ fibers were large myelinated, whereas most CB+ and SSEA4+ fibers were small myelinated. One half of the PV+ fibers were small myelinated and the other half were large myelinated. Of all pNF200+ fibers, about a third each were small myelinated, large myelinated, and unmyelinated. These findings suggest that PV, CR, CB, and SSEA4 can be used as specific markers for primary afferent neurons with myelinated fibers, but that pNF200 is not suitable as a specific marker for primary afferent neurons with myelinated fibers, and also raise the possibility that PV, CR, CB, and SSEA4 may be expressed in both mechanoreceptive and nociceptive neurons.


Electrophysiological Evidence for Functional Astrocytic P2X3 Receptors in the Mouse Trigeminal Caudal Nucleus.

  • Jaekwang Lee‎ et al.
  • Experimental neurobiology‎
  • 2018‎

Recently, we reported that astrocytes in the trigeminal caudal nucleus (Vc) of the brain stem express a purinergic receptor P2X3, which is involved in the craniofacial pathologic pain. Although we observed protein expression of P2X3 receptors (P2X3 Rs) in the astrocyte of the Vc, it is still unclear that astrocyte has functional P2X3Rs in Vc. To address this issue, we recorded asrtocytic P2X3Rs by using whole cell voltage-clamp recording in the Vc of the GFAP-GFP mice, which was used as a guide to astrocytes with green fluorescence. While measuring voltage ramp-induced astrocytic membrane current, we found the amplitude of the current was increased when we applied P2-purinoreceptor agonist, α,β-meATP. This increase was blocked by co-application of A317491, P2X3R antagonist. These results demonstrate that astrocytes in the Vc express functional P2X3Rs, which might be critical in craniofacial pathologic pain.


NGL-2 Deletion Leads to Autistic-like Behaviors Responsive to NMDAR Modulation.

  • Seung Min Um‎ et al.
  • Cell reports‎
  • 2018‎

Netrin-G ligand 2 (NGL-2)/LRRC4, implicated in autism spectrum disorders and schizophrenia, is a leucine-rich repeat-containing postsynaptic adhesion molecule that interacts intracellularly with the excitatory postsynaptic scaffolding protein PSD-95 and trans-synaptically with the presynaptic adhesion molecule netrin-G2. Functionally, NGL-2 regulates excitatory synapse development and synaptic transmission. However, whether it regulates synaptic plasticity and disease-related specific behaviors is not known. Here, we report that mice lacking NGL-2 (Lrrc4-/- mice) show suppressed N-Methyl-D-aspartate receptor (NMDAR)-dependent synaptic plasticity in the hippocampus. NGL-2 associates with NMDARs through both PSD-95-dependent and -independent mechanisms. Moreover, Lrrc4-/- mice display mild social interaction deficits and repetitive behaviors that are rapidly improved by pharmacological NMDAR activation. These results suggest that NGL-2 promotes synaptic stabilization of NMDARs, regulates NMDAR-dependent synaptic plasticity, and prevents autistic-like behaviors from developing in mice, supporting the hypothesis that NMDAR dysfunction contributes to autism spectrum disorders.


OCLI-023, a Novel Pyrimidine Compound, Suppresses Osteoclastogenesis In Vitro and Alveolar Bone Resorption In Vivo.

  • Hye Jung Ihn‎ et al.
  • PloS one‎
  • 2017‎

An abnormal increase in osteoclast differentiation and activation results in various bone-resorptive diseases, including periodontitis, rheumatoid arthritis, and osteoporosis. Chemical compounds containing pyrimidine ring have been shown to regulate a variety of biological processes. Therefore, in order to identify an antiresorptive agent, we synthesized a series of pyrimidine ring-containing chemical compounds, and found that OCLI-023 suppressed the differentiation and activation of osteoclasts in vitro. OCLI-023 directly inhibited receptor activator of nuclear factor-κB ligand (RANKL)-induced differentiation of bone marrow macrophages into osteoclasts, without a cytotoxic response. OCLI-023 also downregulated the RANKL-induced mRNA expression of osteoclast markers as well as inhibited the formation of actin rings and resorption pits. OCLI-023 attenuated the RANKL-induced activation of c-Jun N-terminal kinase and nuclear factor kappa-light-chain-enhancer of activated B cell signaling pathways. In a mouse model of periodontitis, ligature induced an increase of distance between cementoenamel junction (CEJ) and alveolar bone crest (ABC) in the second molar, and OCLI-023 significantly reduced it. Histological analysis showed ligature-induced increase of osteoclast numbers was also significantly reduced by OCLI-023. These data demonstrated the inhibitory effect of OCLI-023 on osteoclast differentiation and activity of osteoclasts in vitro, as well as on ligature-induced bone loss in vivo, and OCLI-023 can be proposed as a novel anti-resorptive compound.


Staphylococcus aureus produces membrane-derived vesicles that induce host cell death.

  • Mamata Gurung‎ et al.
  • PloS one‎
  • 2011‎

Gram-negative bacteria produce outer membrane vesicles that play a role in the delivery of virulence factors to host cells. However, little is known about the membrane-derived vesicles (MVs) produced by gram-positive bacteria. The present study examined the production of MVs from Staphylococcus aureus and investigated the delivery of MVs to host cells and subsequent cytotoxicity. Four S. aureus strains tested, two type strains and two clinical isolates, produced spherical nanovesicles during in vitro culture. MVs were also produced during in vivo infection of a clinical S. aureus isolate in a mouse pneumonia model. Proteomic analysis showed that 143 different proteins were identified in the S. aureus-derived MVs. S. aureus MVs were interacted with the plasma membrane of host cells via a cholesterol-rich membrane microdomain and then delivered their component protein A to host cells within 30 min. Intact S. aureus MVs induced apoptosis of HEp-2 cells in a dose-dependent manner, whereas lysed MVs neither delivered their component into the cytosol of host cells nor induced cytotoxicity. In conclusion, this study is the first report that S. aureus MVs are an important vehicle for delivery of bacterial effector molecules to host cells.


The adhesion protein IgSF9b is coupled to neuroligin 2 via S-SCAM to promote inhibitory synapse development.

  • Jooyeon Woo‎ et al.
  • The Journal of cell biology‎
  • 2013‎

Synaptic adhesion molecules regulate diverse aspects of synapse formation and maintenance. Many known synaptic adhesion molecules localize at excitatory synapses, whereas relatively little is known about inhibitory synaptic adhesion molecules. Here we report that IgSF9b is a novel, brain-specific, homophilic adhesion molecule that is strongly expressed in GABAergic interneurons. IgSF9b was preferentially localized at inhibitory synapses in cultured rat hippocampal and cortical interneurons and was required for the development of inhibitory synapses onto interneurons. IgSF9b formed a subsynaptic domain distinct from the GABAA receptor- and gephyrin-containing domain, as indicated by super-resolution imaging. IgSF9b was linked to neuroligin 2, an inhibitory synaptic adhesion molecule coupled to gephyrin, via the multi-PDZ protein S-SCAM. IgSF9b and neuroligin 2 could reciprocally cluster each other. These results suggest a novel mode of inhibitory synaptic organization in which two subsynaptic domains, one containing IgSF9b for synaptic adhesion and the other containing gephyrin and GABAA receptors for synaptic transmission, are interconnected through S-SCAM and neuroligin 2.


Class 3 semaphorin mediates dendrite growth in adult newborn neurons through Cdk5/FAK pathway.

  • Teclise Ng‎ et al.
  • PloS one‎
  • 2013‎

Class 3 semaphorins are well-known axonal guidance cues during the embryonic development of mammalian nervous system. However, their activity on postnatally differentiated neurons in neurogenic regions of adult brains has not been characterized. We found that silencing of semaphorin receptors neuropilins (NRP) 1 or 2 in neural progenitors at the adult mouse dentate gyrus resulted in newly differentiated neurons with shorter dendrites and simpler branching in vivo. Tyrosine phosphorylation (Tyr 397) and serine phosphorylation (Ser 732) of FAK were essential for these effects. Semaphorin 3A and 3F mediate serine phosphorylation of FAK through the activation of Cdk5. Silencing of either Cdk5 or FAK in newborn neurons phenocopied the defects in dendritic development seen upon silencing of NRP1 or NRP2. Furthermore, in vivo overexpression of Cdk5 or FAK rescued the dendritic phenotypes seen in NRP1 and NRP2 deficient neurons. These results point to a novel role for class 3 semaphorins in promoting dendritic growth and branching during adult hippocampal neurogenesis through the activation of Cdk5-FAK signaling pathway.


Spartin regulates synaptic growth and neuronal survival by inhibiting BMP-mediated microtubule stabilization.

  • Minyeop Nahm‎ et al.
  • Neuron‎
  • 2013‎

Troyer syndrome is a hereditary spastic paraplegia caused by human spartin (SPG20) gene mutations. We have generated a Drosophila disease model showing that Spartin functions presynaptically with endocytic adaptor Eps15 to regulate synaptic growth and function. Spartin inhibits bone morphogenetic protein (BMP) signaling by promoting endocytic degradation of BMP receptor wishful thinking (Wit). Drosophila fragile X mental retardation protein (dFMRP) and Futsch/MAP1B are downstream effectors of Spartin and BMP signaling in regulating microtubule stability and synaptic growth. Loss of Spartin or elevation of BMP signaling induces age-dependent progressive defects resembling hereditary spastic paraplegias, including motor dysfunction and brain neurodegeneration. Null spartin phenotypes are prevented by administration of the microtubule-destabilizing drug vinblastine. Together, these results demonstrate that Spartin regulates both synaptic development and neuronal survival by controlling microtubule stability via the BMP-dFMRP-Futsch pathway, suggesting that impaired regulation of microtubule stability is a core pathogenic component in Troyer syndrome.


The Cdc42-selective GAP rich regulates postsynaptic development and retrograde BMP transsynaptic signaling.

  • Minyeop Nahm‎ et al.
  • The Journal of cell biology‎
  • 2010‎

Retrograde bone morphogenetic protein signaling mediated by the Glass bottom boat (Gbb) ligand modulates structural and functional synaptogenesis at the Drosophila melanogaster neuromuscular junction. However, the molecular mechanisms regulating postsynaptic Gbb release are poorly understood. In this study, we show that Drosophila Rich (dRich), a conserved Cdc42-selective guanosine triphosphatase-activating protein (GAP), inhibits the Cdc42-Wsp pathway to stimulate postsynaptic Gbb release. Loss of dRich causes synaptic undergrowth and strongly impairs neurotransmitter release. These presynaptic defects are rescued by targeted postsynaptic expression of wild-type dRich but not a GAP-deficient mutant. dRich inhibits the postsynaptic localization of the Cdc42 effector Wsp (Drosophila orthologue of mammalian Wiskott-Aldrich syndrome protein, WASp), and manifestation of synaptogenesis defects in drich mutants requires Wsp signaling. In addition, dRich regulates postsynaptic organization independently of Cdc42. Importantly, dRich increases Gbb release and elevates presynaptic phosphorylated Mad levels. We propose that dRich coordinates the Gbb-dependent modulation of synaptic growth and function with postsynaptic development.


Synaptic removal of diacylglycerol by DGKzeta and PSD-95 regulates dendritic spine maintenance.

  • Karam Kim‎ et al.
  • The EMBO journal‎
  • 2009‎

Diacylglycerol (DAG) is an important lipid signalling molecule that exerts an effect on various effector proteins including protein kinase C. A main mechanism for DAG removal is to convert it to phosphatidic acid (PA) by DAG kinases (DGKs). However, it is not well understood how DGKs are targeted to specific subcellular sites and tightly regulates DAG levels. The neuronal synapse is a prominent site of DAG production. Here, we show that DGKzeta is targeted to excitatory synapses through its direct interaction with the postsynaptic PDZ scaffold PSD-95. Overexpression of DGKzeta in cultured neurons increases the number of dendritic spines, which receive the majority of excitatory synaptic inputs, in a manner requiring its catalytic activity and PSD-95 binding. Conversely, DGKzeta knockdown reduces spine density. Mice deficient in DGKzeta expression show reduced spine density and excitatory synaptic transmission. Time-lapse imaging indicates that DGKzeta is required for spine maintenance but not formation. We propose that PSD-95 targets DGKzeta to synaptic DAG-producing receptors to tightly couple synaptic DAG production to its conversion to PA for the maintenance of spine density.


Expression of P2X3 receptor in the trigeminal sensory nuclei of the rat.

  • Yun Sook Kim‎ et al.
  • The Journal of comparative neurology‎
  • 2008‎

Trigeminal primary afferents expressing P2X(3) receptor are involved in the transmission of orofacial nociceptive information. However, little is known about their central projection pattern and ultrastructural features within the trigeminal brainstem sensory nuclei (TBSN). Here we use multiple immunofluorescence and electron microscopy to characterize the P2X(3)-immunopositive (+) neurons in the trigeminal ganglion and describe the distribution and synaptic organization of their central terminals within the rat TBSN, including nuclei principalis (Vp), oralis (Vo), interpolaris (Vi), and caudalis (Vc). In the trigeminal ganglion, P2X(3) immunoreactivity was mainly in small and medium-sized somata, but also frequently in large somata. Although most P2X(3) (+) somata costained for the nonpeptidergic marker IB4, few costained for the peptidergic marker substance P. Most P2X(3) (+) fibers in the sensory root of trigeminal ganglion (92.9%) were unmyelinated, whereas the rest were small myelinated. In the TBSN, P2X(3) immunoreactivity was dispersed in the rostral TBSN but was dense in the superficial laminae of Vc, especially in the inner lamina II. The P2X(3) (+) terminals contained numerous clear, round vesicles and sparse large, dense-core vesicles. Typically, they were presynaptic to one or two dendritic shafts and also frequently postsynaptic to axonal endings, containing pleomorphic vesicles. Such P2X(3) (+) terminals, showing glomerular shape and complex synaptic relationships, and those exhibiting axoaxonic contacts, were more frequently seen in Vp than in any other TBSN. These results suggest that orofacial nociceptive information may be transmitted via P2X(3) (+) afferents to all TBSN and that it may be processed differently in different TBSN.


Characterization of the zinc-induced Shank3 interactome of mouse synaptosome.

  • Yeunkum Lee‎ et al.
  • Biochemical and biophysical research communications‎
  • 2017‎

Variants of the SHANK3 gene, which encodes a core scaffold protein of the postsynaptic density of excitatory synapses, have been causally associated with numerous brain disorders. Shank3 proteins directly bind zinc ions through their C-terminal sterile α motif domain, which enhances the multimerization and synaptic localization of Shank3, to regulate excitatory synaptic strength. However, no studies have explored whether zinc affects the protein interactions of Shank3, which might contribute to the synaptic changes observed after zinc application. To examine this, we first purified Shank3 protein complexes from mouse brain synaptosomal lysates that were incubated with different concentrations of ZnCl2, and analyzed them with mass spectrometry. We used strict criteria to identify 71 proteins that specifically interacted with Shank3 when extra ZnCl2 was added to the lysate. To characterize the zinc-induced Shank3 interactome, we performed various bioinformatic analyses that revealed significant associations of the interactome with subcellular compartments, including mitochondria, and brain disorders, such as bipolar disorder and schizophrenia. Together, our results showing that zinc affected the Shank3 protein interactions of in vitro mouse synaptosomes provided an additional link between zinc and core synaptic proteins that have been implicated in multiple brain disorders.


Wnt-PLC-IP3-Connexin-Ca2+ axis maintains ependymal motile cilia in zebrafish spinal cord.

  • Jun Zhang‎ et al.
  • Nature communications‎
  • 2020‎

Ependymal cells (ECs) are multiciliated neuroepithelial cells that line the ventricles of the brain and the central canal of the spinal cord (SC). How ependymal motile cilia are maintained remains largely unexplored. Here we show that zebrafish embryos deficient in Wnt signaling have defective motile cilia, yet harbor intact basal bodies. With respect to maintenance of ependymal motile cilia, plcδ3a is a target gene of Wnt signaling. Lack of Connexin43 (Cx43), especially its channel function, decreases motile cilia and intercellular Ca2+ wave (ICW) propagation. Genetic ablation of cx43 in zebrafish and mice diminished motile cilia. Finally, Cx43 is also expressed in ECs of the human SC. Taken together, our findings indicate that gap junction mediated ICWs play an important role in the maintenance of ependymal motile cilia, and suggest that the enhancement of functional gap junctions by pharmacological or genetic manipulations may be adopted to ameliorate motile ciliopathy.


Suppressive effects of (-)-tubaic acid on RANKL-induced osteoclast differentiation and bone resorption.

  • Soomin Lim‎ et al.
  • Animal cells and systems‎
  • 2023‎

Regulation of osteoclastogenesis and bone-resorbing activity can be an efficacious strategy for treating bone loss diseases because excessive osteoclastic bone resorption leads to the development of such diseases. Here, we investigated the role of (-)-tubaic acid, a thermal degradation product of rotenone, in osteoclast formation and function in an attempt to identify alternative natural compounds. (-)-Tubaic acid significantly inhibited receptor activator of nuclear factor-κB ligand (RANKL)-mediated osteoclast differentiation at both the early and late stages, suggesting that (-)-tubaic acid affects the commitment and differentiation of osteoclast progenitors as well as the cell-cell fusion of mononuclear osteoclasts. (-)-Tubaic acid attenuated the activation of extracellular signal-regulated kinase (ERK) and expression of nuclear factor of activated T-cells cytoplasmic 1 (NFATc1) and its target genes in response to RANKL. Furthermore, a pit-formation assay revealed that (-)-tubaic acid significantly impaired the bone-resorbing activity of osteoclasts. Our results demonstrated that (-)-tubaic acid exhibits anti-osteoclastogenic and anti-resorptive effects, indicating its therapeutic potential in the management of osteoclast-related bone diseases.


Ablation of dynamin-related protein 1 promotes diabetes-induced synaptic injury in the hippocampus.

  • Gyeongah Park‎ et al.
  • Cell death & disease‎
  • 2021‎

Dynamin-related protein 1 (Drp1)-mediated mitochondrial dysfunction is associated with synaptic injury in the diabetic brain. However, the dysfunctional mitochondria by Drp1 deletion in the diabetic brain are poorly understood. Here, we investigated the effects of neuron-specific Drp1 deletion on synaptic damage and mitophagy in the hippocampus of a high-fat diet (HFD)/streptozotocin (STZ)-induced diabetic mice. HFD/STZ-induced diabetic mice exhibited metabolic disturbances and synaptic damages. Floxed Drp1 mice were crossed with Ca2+/calmodulin-dependent protein kinase IIα (CaMKIIα)-Cre mice, to generate neuron-specific Drp1 knockout (Drp1cKO) mice, which showed marked mitochondrial swelling and dendritic spine loss in hippocampal neurons. In particular, diabetic Drp1cKO mice exhibited an increase in dendritic spine loss and higher levels of oxidative stress and neuroinflammation compared with diabetic wild-type (WT) mice. Diabetic WT mice generally displayed increased Drp1-induced small mitochondrial morphology in hippocampal neurons, but large mitochondria were prominently observed in diabetic Drp1cKO mice. The levels of microtubule-associated protein 1 light-chain 3 and lysosomal-associated membrane protein 1 proteins were significantly increased in the hippocampus of diabetic Drp1cKO mice compared with diabetic WT mice. The inhibition of Drp1 adversely promotes synaptic injury and neurodegeneration in the diabetic brain. The findings suggest that the exploratory mechanisms behind Drp1-mediated mitochondrial dysfunction could provide a possible therapeutic target for diabetic brain complications.


DRG2 Deficient Mice Exhibit Impaired Motor Behaviors with Reduced Striatal Dopamine Release.

  • Hye Ryeong Lim‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

Developmentally regulated GTP-binding protein 2 (DRG2) was first identified in the central nervous system of mice. However, the physiological function of DRG2 in the brain remains largely unknown. Here, we demonstrated that knocking out DRG2 impairs the function of dopamine neurons in mice. DRG2 was strongly expressed in the neurons of the dopaminergic system such as those in the striatum (Str), ventral tegmental area (VTA), and substantia nigra (SN), and on neuronal cell bodies in high-density regions such as the hippocampus (HIP), cerebellum, and cerebral cortex in the mouse brain. DRG2 knockout (KO) mice displayed defects in motor function in motor coordination and rotarod tests and increased anxiety. However, unexpectedly, DRG2 depletion did not affect the dopamine (DA) neuron population in the SN, Str, or VTA region or dopamine synthesis in the Str region. We further demonstrated that dopamine release was significantly diminished in the Str region of DRG2 KO mice and that treatment of DRG2 KO mice with l-3,4-dihydroxyphenylalanine (L-DOPA), a dopamine precursor, rescued the behavioral motor deficiency in DRG2 KO mice as observed with the rotarod test. This is the first report to identify DRG2 as a key regulator of dopamine release from dopamine neurons in the mouse brain.


Parkin in early stage LPS-stimulated BV-2 cells regulates pro-inflammatory response and mitochondrial quality via mitophagy.

  • Hye Keun Yun‎ et al.
  • Journal of neuroimmunology‎
  • 2019‎

No abstract available


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: