Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Farnesylation-defective Rheb Increases Axonal Length Independently of mTORC1 Activity in Embryonic Primary Neurons.

  • Seunghyuk Choi‎ et al.
  • Experimental neurobiology‎
  • 2019‎

Rheb (Ras homolog enriched in the brain) is a small GTPase protein that plays an important role in cell signaling for development of the neocortex through modulation of mTORC1 (mammalian-target-of-rapamycin-complex-1) activity. mTORC1 is known to control various biological processes including axonal growth in forming complexes at the lysosomal membrane compartment. As such, anchoring of Rheb on the lysosomal membrane via the farnesylation of Rheb at its cysteine residue (C180) is required for its promotion of mTOR activity. To test the significance of Rheb farnesylation, we overexpressed a farnesylation mutant form of Rheb, Rheb C180S, in primary rat hippocampal neurons and also in mouse embryonic neurons using in utero electroporation. Interestingly, we found that Rheb C180S maintained promotional effect of axonal elongation similar to the wild-type Rheb in both test systems. On the other hand, Rheb C180S failed to exhibit the multiple axon-promoting effect which is found in wild-type Rheb. The levels of phospho-4EBP1, a downstream target of mTORC1, were surprisingly increased in Rheb C180S transfected neurons, despite the levels of phosphorylated mTOR being significantly decreased compared to control vector transfectants. A specific mTORC1 inhibitor, rapamycin, also could not completely abolish axon elongation characteristics of Rheb C180S in transfected cells. Our data suggests that Rheb in a non-membrane compartment can promote the axonal elongation via phosphorylation of 4EBP1 and through an mTORC1-independent pathway.


Three-Dimensional Analysis of Mouse Habenula Subnuclei Reveals Reduced Volume and Gene Expression in the Lipopolysaccharide-mediated Depression Model.

  • Esther Yang‎ et al.
  • Experimental neurobiology‎
  • 2019‎

The habenula (Hb) is small but important brain structure, anatomically and functionally links the forebrain with the midbrain to modulate various neuropsychiatric functions associated with drug addiction and emotion-associated dysfunctions. Several reports suggested that the dysfunction of Hb-related functions affected the Hb structurally and functionally. However, the technical limitation has awaited the solid conclusion of whether Hb change due to depression is likely to occur in certain subnuclei of the Hb. To probe this possibility, we developed 3-dimensional reconstruction methods for the high-resolution volumetric analysis of Hb and the mRNA levels at the given volume in normal or lipopolysaccharide (LPS)-mediated mouse model of depression. Notably, we discovered that the volume reduction was prominent in medial Hb but not in lateral Hb after LPS treatments. On the other hand, the RNA expression levels of known Hb regional markers such as Tac1 (dorsal part of medial Hb), ChAT (ventral part of medial Hb), and Tacr1 (medial and lateral Hb) were all decreased in all Hb subnuclei in LPS-injected mice. Accordingly, accurate volumetry with marker labeling was not feasible. Collectively, these established 3D analyses of mouse Hb successfully and precisely determine the volume-based changes of small brain structure, which should be applicable in a wider range of mouse models or pathological specimens.


Control of Mitochondrial Dynamics by Fas-induced Caspase-8 Activation in Hippocampal Neurons.

  • Hyo Min Cho‎ et al.
  • Experimental neurobiology‎
  • 2015‎

Cells undergo apoptosis mainly via two pathways-the mitochondrial pathway and the cytosolic pathway. It has been well documented that activation of the mitochondrial pathway promotes mitochondrial fragmentation and inhibition of mitochondrial fragmentation partly represses cell death. However, the mitochondrial events following activation of the cytosolic pathway are less understood. In this study, we treated Fas-activating antibody and found mitochondrial fragmentation without cell death in hippocampal primary neurons and HT-22 cell lines. Fas antibody treatment, in fact, promoted rapid activation of caspase-8, while executioner caspase-3 activation was not observed. Furthermore, blockage of caspase-8 efficiently prevented Fas antibody-induced mitochondrial fragmentation. These results suggest that the cytosolic pathway induced by death receptor activation promotes caspase-8-dependent mitochondrial fission.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: