Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 56 papers

Propolis, a Constituent of Honey, Inhibits the Development of Sugar Cataracts and High-Glucose-Induced Reactive Oxygen Species in Rat Lenses.

  • Teppei Shibata‎ et al.
  • Journal of ophthalmology‎
  • 2016‎

Purpose. This study investigated the effects of oral propolis on the progression of galactose-induced sugar cataracts in rats and the in vitro effects of propolis on high-glucose-induced reactive oxygen species (ROS) and cell death in cultured rat lens cells (RLECs). Methods. Galactose-fed rats and RLECs cultured in high glucose (55 mM) medium were treated with propolis or vehicle control. Relative lens opacity was assessed by densitometry and changes in lens morphology by histochemical analysis. Intracellular ROS levels and cell viability were measured. Results. Oral administration of propolis significantly inhibited the onset and progression of cataract in 15% and 25% of galactose-fed rats, respectively. RLECs cultured with high glucose showed a significant increase in ROS expression with reduced cell viability. Treatment of these RLECs with 5 and 50 μg/mL propolis cultured significantly reduced ROS levels and increased cell viability, indicating that the antioxidant activity of propolis protected cells against ROS-induced damage. Conclusion. Propolis significantly inhibited the onset and progression of sugar cataract in rats and mitigated high-glucose-induced ROS production and cell death. These effects may be associated with the ability of propolis to inhibit hyperglycemia-evoked oxidative or osmotic stress-induced cellular insults.


Attenuation of teratoma formation by p27 overexpression in induced pluripotent stem cells.

  • Toru Matsu-ura‎ et al.
  • Stem cell research & therapy‎
  • 2016‎

Pluripotent stem cells, such as embryonic stem cells or induced pluripotent stem cells, have a great potential for regenerative medicine. Induced pluripotent stem cells, in particular, are suitable for replacement of tissue by autologous transplantation. However, tumorigenicity is a major risk in clinical application of both embryonic stem cells and induced pluripotent stem cells. This study explores the possibility of manipulating the cell cycle for inhibition of tumorigenicity.


Identification of Differential Gene Expression Pattern in Lens Epithelial Cells Derived from Cataractous and Noncataractous Lenses of Shumiya Cataract Rat.

  • Hidetoshi Ishida‎ et al.
  • BioMed research international‎
  • 2020‎

The Shumiya cataract rat (SCR) is a model for hereditary cataract. Two-thirds of these rats develop lens opacity within 10-11 weeks. Onset of cataract is attributed to the synergetic effect of lanosterol synthase (Lss) and farnesyl-diphosphate farnesyltransferase 1 (Fdft1) mutant alleles that lead to cholesterol deficiency in the lenses, which in turn adversely affects lens biology including the growth and differentiation of lens epithelial cells (LECs). Nevertheless, the molecular events and changes in gene expression associated with the onset of lens opacity in SCR are poorly understood. In the present study, a microarray-based approach was employed to analyze comparative gene expression changes in LECs isolated from the precataractous and cataractous stages of lenses of 5-week-old SCRs. The changes in gene expression observed in microarray results in the LECs were further validated using real-time reverse transcribed quantitative PCR (RT-qPCR) in 5-, 8-, and 10-week-old SCRs. A mild posterior and cortical opacity was observed in 5-week-old rats. Expressions of approximately 100 genes, including the major intrinsic protein of the lens fiber (Mip and Aquaporin 0), deoxyribonuclease II beta (Dnase2B), heat shock protein B1 (HspB1), and crystallin γ (γCry) B, C, and F, were found to be significantly downregulated (0.07-0.5-fold) in rat LECs derived from cataract lenses compared to that in noncataractous lenses (control). Thus, our study was aimed at identifying the gene expression patterns during cataract formation in SCRs, which may be responsible for cataractogenesis in SCR. We proposed that cataracts in SCR are associated with reduced expression of these lens genes that have been reported to be related with lens fiber differentiation. Our findings may have wider implications in understanding the effect of cholesterol deficiency and the role of cholesterol-lowering therapeutics on cataractogenesis.


Serum exosomal microRNA-34a as a potential biomarker in epithelial ovarian cancer.

  • Kazuya Maeda‎ et al.
  • Journal of ovarian research‎
  • 2020‎

Ovarian cancer (OC) is a leading cause of cancer-related death in women, and thus an accurate diagnosis of the predisposition and its early detection is necessary. The aims of this study were to determine whether serum exosomal microRNA-34a (miR-34a) in ovarian cancer could be used as a potential biomarker.


Ophthalmic In Situ Gelling System Containing Lanosterol Nanoparticles Delays Collapse of Lens Structure in Shumiya Cataract Rats.

  • Noriaki Nagai‎ et al.
  • Pharmaceutics‎
  • 2020‎

We attempted to prepare ophthalmic in situ gel formulations containing lanosterol (Lan) nanoparticles (LA-NPs/ISG) and investigated the characteristics, delivery pathway into the lens, and anti-cataract effects of LA-NPs/ISG using SCR-N (rats with slight lens structure collapse) and SCR-C (rats with a combination of remarkable lens structure collapse and opacification). LA-NPs/ISG was prepared by bead milling of the dispersions containing 0.5% Lan powder, 5% 2-hydroxypropyl-β-cyclodextrin, 0.5% methylcellulose, 0.005% benzalkonium chloride, and 0.5% mannitol. The particle size distribution of Lan was 60-250 nm. The LA-NPs/ISG was gelled at 37 °C, and the LA-NPs/ISG was taken into the cornea by energy-dependent endocytosis and then released to the intraocular side. In addition, the Lan contents in the lenses of both SCR-N and SCR-C were increased by the repetitive instillation of LA-NPs/ISG (twice per day). The space and structure collapse in the lens of SCR-N with aging was attenuated by the instillation of LA-NPs/ISG. Moreover, the repetitive instillation of LA-NPs/ISG attenuated the changes in cataract-related factors (the enhancement of nitric oxide levels, calpain activity, lipid peroxidation levels, Ca2+ contents, and the decrease of Ca2+-ATPase activity) in the lenses of SCR-C, and the repetitive instillation of LA-NPs/ISG delayed the onset of opacification in the SCR-C. It is possible that the LA-NPs/ISG is useful in maintaining lens homeostasis.


The Impact of ABO Blood Type on Developing Venous Thromboembolism in Cancer Patients: Systematic Review and Meta-Analysis.

  • Fumihiko Urabe‎ et al.
  • Journal of clinical medicine‎
  • 2021‎

The impact of ABO blood type in the development of venous thromboembolism in cancer patients remains controversial. To develop a sense of the current opinion in this area, we conducted a systematic review and meta-analysis. In March 2021, we performed a systematic search of PubMed, the Cochrane library, and Scopus for studies that compared cancer patients who had a blood type of either O or non-O (A, B, and AB). Our objective was to use multivariate logistic regression analysis to determine how ABO blood type was associated with the development of venous thromboembolism. Our selection criteria were met by a total of nine studies in 25,884 patients for the systematic review and five studies in 22,777 patients for the meta-analysis. In cancer patients, we found that non-O blood type was associated with a nearly two-fold increase in risk of venous thromboembolism (pooled OR: 1.74, 95% CI: 1.44-2.10). Additionally, among the eligible patients, 21,889 patients were post-operative urological cancer patients. In these patients, the analysis also showed an association between non-O blood type and increasing risk of venous thromboembolism after pelvic surgery for malignancy (pooled OR: 1.73, 95% CI: 1.36-2.20). Our meta-analysis suggested that non-O blood type is a risk factor for venous thromboembolism among patients with cancer. As blood type is routinely determined preoperatively by objective and standardized methods, we anticipate that our results will be useful for managing venous thromboembolism in cancer patients, especially after pelvic surgery for urological cancers.


Analyzing Effect of Waterclefts on Visual Functions Via Optical Simulations.

  • Yusuke Seki‎ et al.
  • Investigative ophthalmology & visual science‎
  • 2022‎

To investigate the impact of the size and location of waterclefts (WC), which are one of several cataract subtypes, on visual function by optical simulation analysis.


Orally disintegrating tablets containing famotidine nanoparticles provide high intestinal absorbability via the energy-dependent endocytosis pathway.

  • Noriaki Nagai‎ et al.
  • Frontiers in bioengineering and biotechnology‎
  • 2023‎

The permeability of the Biopharmaceutics Classification System (BCS) class III drugs are low, and their oral bioavailability needs to be improved. In this study, we attempted to design oral formulations containing famotidine (FAM) nanoparticles to overcome the limitations of BCS class III drugs. Dispersions containing FAM nanoparticles with a particle size of approximately 50-220 nm were produced by the bead-milling treatment. Moreover, we succeeded in preparing an orally disintegrating tablet containing FAM nanoparticles using the dispersions described above, additives (D-mannitol, polyvinylpyrrolidone, and gum arabic), and freeze-dry treatment (FAM-NP tablet). The FAM-NP tablet was disaggregated 3.5 s after addition to purified water, and the FAM particles in the redispersion of the FAM-NP tablet stored for 3 months were nano-sized (141 ± 6.6 nm). The ex-vivo intestinal penetration and in vivo absorption of FAM in rats applied with the FAM-NP tablet were significantly higher than those in rats applied with the FAM tablet containing microparticles. In addition, enhanced intestinal penetration of the FAM-NP tablet was attenuated by an inhibitor of clathrin-mediated endocytosis. In conclusion, the orally disintegrating tablet containing FAM nanoparticles improved low mucosal permeability and low oral bioavailability and overcame these issues of BCS class III drugs as oral formulations.


Dynamic Compressive Loading Improves Cartilage Repair in an In Vitro Model of Microfracture: Comparison of 2 Mechanical Loading Regimens on Simulated Microfracture Based on Fibrin Gel Scaffolds Encapsulating Connective Tissue Progenitor Cells.

  • Tomoya Iseki‎ et al.
  • The American journal of sports medicine‎
  • 2019‎

Microfracture of focal chondral defects often produces fibrocartilage, which inconsistently integrates with the surrounding native tissue and possesses inferior mechanical properties compared with hyaline cartilage. Mechanical loading modulates cartilage during development, but it remains unclear how loads produced in the course of postoperative rehabilitation affect the formation of the new fibrocartilaginous tissue.


Epiblast Formation by TEAD-YAP-Dependent Expression of Pluripotency Factors and Competitive Elimination of Unspecified Cells.

  • Masakazu Hashimoto‎ et al.
  • Developmental cell‎
  • 2019‎

The epiblast is a pluripotent cell population first formed in preimplantation embryos, and its quality is important for proper development. Here, we examined the mechanisms of epiblast formation and found that the Hippo pathway transcription factor TEAD and its coactivator YAP regulate expression of pluripotency factors. After specification of the inner cell mass, YAP accumulates in the nuclei and activates TEAD. TEAD activity is required for strong expression of pluripotency factors and is variable in the forming epiblast. Cells showing low TEAD activity are eliminated from the epiblast through cell competition. Pluripotency factor expression and MYC control cell competition downstream of TEAD activity. Cell competition eliminates unspecified cells and is required for proper organization of the epiblast. These results suggest that induction of pluripotency factors by TEAD activity and elimination of unspecified cells via cell competition ensure the production of an epiblast with naive pluripotency.


Pulmonary metastases after low-dose-rate brachytherapy for localized prostate cancer.

  • Masahito Kido‎ et al.
  • Korean journal of urology‎
  • 2014‎

To analyze unusual events and focus discussion on pulmonary metastasis in particular after low-dose-rate brachytherapy (LDR-BT) for prostate cancer (PCa).


Obesity in Yap transgenic mice is associated with TAZ downregulation.

  • Keiichiro Kamura‎ et al.
  • Biochemical and biophysical research communications‎
  • 2018‎

Obesity is characterized by an expansion of white adipose tissue (WAT) mass, which mainly consists of adipocytes. During the commitment and differentiation of adipocytes, PPARγ functions as a key transcriptional factor for adipogenesis, and is associated with its suppressive coregulator, TAZ. Previous studies have shown the importance of TAZ in adipogenesis using an in vitro model; however, the understanding of its role in adipogenesis in vivo remains limited. Here, we report a unique obese mouse model that is associated with TAZ downregulation, which arose from the overexpression of Yap, a Taz paralog. YAP activation facilitated Hippo signaling feedback, which induced a compensatory reduction in YAP, subsequently neutralizing its functional activity. This feedback also induced TAZ suppression and exclusion from the nucleus. In Yap transgenic mice, TAZ downregulation in adipose stem cells activated PPARγ, leading to their differentiation into mature adipocytes and consequently increased adipose tissue. These results highlight the in vivo necessity of TAZ for adipocyte commitment and differentiation, which could provide insight into anti-obesity therapeutics.


Notch and Hippo signaling converge on Strawberry Notch 1 (Sbno1) to synergistically activate Cdx2 during specification of the trophectoderm.

  • Yusuke Watanabe‎ et al.
  • Scientific reports‎
  • 2017‎

The first binary cell fate decision occurs at the morula stage and gives rise to two distinct types of cells that constitute the trophectoderm (TE) and inner cell mass (ICM). The cell fate determinant, Cdx2, is induced in TE cells and plays an essential role in their differentiation and maintenance. Notch and Hippo signaling cascades are assumed to converge onto regulatory elements of Cdx2, however, the underlying molecular mechanisms are largely unknown. Here, we show involvement of Strawberry Notch1 (Sbno1), a novel chromatin factor of the helicase superfamily 2, during preimplantation development. Sbno1 knockout embryos die at the preimplantation stage without forming a blastocoel, and Cdx2 is not turned on even though both Yap and Tead4 reside normally in nuclei. Accordingly, Sbno1 acts on the trophectoderm-enhancer (TEE) of Cdx2, ensuring its robust and synergistic activation by the Yap/Tead4 and NICD/Rbpj complexes. Interestingly, this synergism is enhanced when cells are mechanically stretched, which might reflect that TE cells are continuously stretched by the expanding ICM and blastocoel cavity. In addition, the histone chaperone, FACT (FAcilitates Chromatin Transcription) physically interacts with Sbno1. Our data provide new evidence on TE specification, highlighting unexpected but essential functions of the highly conserved chromatin factor, Sbno1.


MicroRNA-22 enhances radiosensitivity in cervical cancer cell lines via direct inhibition of c-Myc binding protein, and the subsequent reduction in hTERT expression.

  • Mayumi Nakamura‎ et al.
  • Oncology letters‎
  • 2020‎

MicroRNAs (miRs) influence the expression of their target genes post-transcriptionally and serve an important role in multiple cellular processes. The downregulation of miR-22 is associated with a poor prognosis in cervical cancer. However, the mechanisms underlying miR-22-mediated gene regulation and its function are yet to be elucidated. In the present study, the effect of miR-22 expression on the radiosensitivity of cervical cancer was investigated. First, miR-22 was either up- or downregulated to evaluate the regulation of the MYC-binding protein (MYCBP) in four cervical cancer cell lines (C-4I, SKG-II and SiHa). Notably, MYCBP expression was inversely associated with miR-22 induction. A dual-luciferase reporter gene assay revealed that miR-22 directly targets the MYCBP 3'-untranslated region. Subsequently, the level of human telomerase reverse transcriptase component (hTERT; an E-box-containing c-Myc target gene) was analyzed after the up- or downregulation of miR-22. Notably, miR-22-mediated repression of MYCBP reduced hTERT expression. In addition, the influence of miR-22 on radiosensitivity in C-4I, SKG-II and SiHa cells was examined using a clonogenic assay and in mouse xenograft models. Upregulation of miR-22 was associated with increased radiosensitivity. Furthermore, lentiviral transduction of miR-22 reduced the Ki-67 index while increasing the TUNEL index in xenograft tissue. The current findings indicate the potential utility of miR-22 in radiotherapy for cervical cancer.


Combination of Lanosterol and Nilvadipine Nanosuspensions Rescues Lens Opacification in Selenite-Induced Cataractic Rats.

  • Saori Deguchi‎ et al.
  • Pharmaceutics‎
  • 2022‎

It has recently been reported that lanosterol (LAN) plays a preventive role against lens opacification through the reversal of crystalline aggregation. However, the effect of LAN is not sufficient to restore lens transparency. In this study, we designed ophthalmic nanosuspensions (LAN-ONSs and NIL-ONSs) based on LAN and nilvadipine (NIL), which can counteract cataract-related factors (e.g., enhanced Ca2+ and calpain levels), and investigated whether the combination of LAN-ONSs and NIL-ONSs can restore the nuclear lens opacity in sodium-selenite-induced cataractic rats (cataractic rats). The mean particle sizes of the LAN-ONSs and NIL-ONSs were 108.8 nm and 89.0 nm, respectively. The instillation of the LAN-ONSs or NIL-ONSs successfully delivered the drugs (LAN or NIL) into the lenses of the rats, although the instillation of LAN-ONSs or NIL-ONSs alone did not increase lens transparency in the cataractic rats. On the other hand, the cataract-related factors (enhanced Ca2+ and calpain levels) were significantly alleviated by the combination of LAN-ONSs and NIL-ONSs; furthermore, the perinuclear refractile ring in the lens nucleus and enhanced number of swollen fibers were attenuated by the LAN-ONS and NIL-ONS combination. Moreover, the opacity levels in the cataractic rats were reduced after treatment with the combination of LAN-ONSs and NIL-ONSs. It is possible that the combination of LAN and NIL will be useful for the treatment of lens opacification in the future.


Prognostic Significance of Prostate-Specific Antigen Persistence after Radical Prostatectomy: A Systematic Review and Meta-Analysis.

  • Shoji Kimura‎ et al.
  • Cancers‎
  • 2021‎

We performed a systematic review and meta-analysis to assess the prognostic value of prostate-specific antigen (PSA) persistence 4-8 weeks after radical prostatectomy (RP) in patients with prostate cancer, using studies from Medline, Scopus, and Cochrane Library, on 10 October 2020. Studies were eligible if they compared patients with postoperative PSA persistence 4-8 weeks after RP to those without such persistence to assess the value of PSA persistence in prognosticating biochemical recurrence (BCR), disease recurrence, cancer-specific mortality (CSM), and overall mortality (OM) by multivariable analysis. Our review and analysis included nine studies published between 2008 and 2019 with 14,455 patients. Of those studies, 12.0% showed postoperative PSA persistence. PSA persistence was associated with BCR (HR: 4.44, 95% CI: 2.84-6.93), disease recurrence (HR: 3.43, 95% CI: 1.62-7.25), and CSM (HR: 2.32, 95% CI: 1.83-2.95). We omitted meta-analysis on the association of PSA persistence with OM due to an insufficient number of studies. PSA persistence was associated with disease recurrence in a sub-group of patients with pathological nodal involvement (HR: 5.90, 95% CI: 3.76-9.24). Understanding detection of PSA persistence at 4-8 weeks after RP might be useful for patient counseling, follow-up scheduling, and clinical decision-making regarding adjuvant therapies.


Degradation of connexin 50 protein causes waterclefts in human lens.

  • Yosuke Nakazawa‎ et al.
  • Open medicine (Warsaw, Poland)‎
  • 2020‎

Cataracts are mainly classified into three types: cortical cataracts, nuclear cataracts, and posterior subcapsular cataracts. In addition, retrodots and waterclefts are cataract subtypes that cause decreased visual function. To maintain an orderly and tightly packed arrangement to minimize light scattering, adhesion molecules such as connexins and aquaporin 0 (AQP0) are highly expressed in the lens. We hypothesized that some main and/or subcataract type(s) are correlated with adhesion molecule degradation. Lens samples were collected from cataract patients during cataract surgery, and mRNA and protein expression levels were measured by real-time RT-PCR and western blotting, respectively. The mRNA levels of adhesion molecules were not significantly different among any cataract types. Moreover, AQP0 and connexin 46 protein expressions were unchanged among patients. However, connexin 50 protein level was significantly decreased in the lens of patients with WC cataract subtype. P62 and LC3B proteins were detected in the WC patients' lenses, but not in other patients' lenses. These results suggest that more research is needed on the subtypes of cataracts besides the three major types of cataract for tailor-made cataract therapy.


Effect of a Lens Protein in Low-Temperature Culture of Novel Immortalized Human Lens Epithelial Cells (iHLEC-NY2).

  • Naoki Yamamoto‎ et al.
  • Cells‎
  • 2020‎

The prevalence of nuclear cataracts was observed to be significantly higher among residents of tropical and subtropical regions compared to those of temperate and subarctic regions. We hypothesized that elevated environmental temperatures may pose a risk of nuclear cataract development. The results of our in silico simulation revealed that in temperate and tropical regions, the human lens temperature ranges from 35.0 °C to 37.5 °C depending on the environmental temperature. The medium temperature changes during the replacement regularly in the cell culture experiment were carefully monitored using a sensor connected to a thermometer and showed a decrease of 1.9 °C, 3.0 °C, 1.7 °C, and 0.1 °C, after 5 min when setting the temperature of the heat plate device at 35.0 °C, 37.5 °C, 40.0 °C, and 42.5 °C, respectively. In the newly created immortalized human lens epithelial cell line clone NY2 (iHLEC-NY2), the amounts of RNA synthesis of αA crystallin, protein expression, and amyloid β (Aβ)1-40 secreted into the medium were increased at the culture temperature of 37.5 °C compared to 35.0 °C. In short-term culture experiments, the secretion of Aβ1-40 observed in cataracts was increased at 37.5 °C compared to 35.0 °C, suggesting that the long-term exposure to a high-temperature environment may increase the risk of cataracts.


Balance of Drug Residence and Diffusion in Lacrimal Fluid Determine Ocular Bioavailability in In Situ Gels Incorporating Tranilast Nanoparticles.

  • Misa Minami‎ et al.
  • Pharmaceutics‎
  • 2021‎

We previously designed ophthalmic formulations (nTRA) containing tranilast nanoparticles (Tra-NPs) with high uptake into ocular tissues. In this study, we used in situ gel (ISG) bases comprising combinations of pluronic F127 (F127) and methylcellulose (MC/F127), pluronic F68 (F68/F127), and Carbopol (Car/F127), and we developed in situ gels incorporating Tra-NPs (Tra-NP-incorporated ISNGs) such as nTRA-F127, nTRA-MC/F127, nTRA-F68/F127, and nTRA-Car/F127. Moreover, we demonstrated the therapeutic effect on conjunctival inflammation using lipopolysaccharide-induced rats. Each Tra-NP-incorporated ISNG was prepared by the bead mill method, the particle size was 40-190 nm, and the tranilast release and diffusion from formulation were nTRA > nTRA-F127 > nTRA-F68/F127 > nTRA-Car/F127 > nTRA-MC/F127. In the Tra-NP-incorporated ISNGs, the tranilast residence time in the lacrimal fluid, cornea, and conjunctiva was prolonged, although the Cmax was attenuated in comparison with nTRA. On the other hand, no significant difference in conjunctival inflammation between non- and nTRA-F127-instilled rats was found; however, the nTRA-F68/F127, nTRA-Car/F127, and nTRA-MC/F127 (combination-ISG) attenuated the vessel leakage, nitric oxide, and tumor necrosis factor-α expression. In particular, nTRA-F68/F127 was significant in preventing the conjunctival inflammation. In conclusion, we found that the combination-ISG base prolonged the residence time of Tra-NPs; however, Tra-NP release from the formulation was attenuated, and the Tmax was delayed longer than that in nTRA. The balance of drug residence and diffusion in lacrimal fluid may be important in providing high ocular bioavailability in formulations containing solid nanoparticles.


Energy-Dependent Endocytosis Is Responsible for Skin Penetration of Formulations Based on a Combination of Indomethacin Nanoparticles and l-Menthol in Rat and Göttingen Minipig.

  • Hiroko Otake‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

We previously designed a Carbopol gel formulation (N-IND/MEN) based on a combination of indomethacin solid nanoparticles (IND-NPs) and l-menthol, and we reported that the N-IND/MEN showed high transdermal penetration. However, the detailed mechanism for transdermal penetration of IND-NPs was not clearly defined. In this study, we investigated whether endocytosis in the skin tissue of rat and Göttingen minipig is related to the transdermal penetration of IND-NPs using pharmacological inhibitors of endocytosis. The pharmacological inhibitors used in this study are as follows: 54 µM nystatin, a caveolae-mediated endocytosis (CavME) inhibitor; 40 µM dynasore, a clathrin-mediated endocytosis (CME) inhibitor; and 2 µM rottlerin, a micropinocytosis (MP) inhibitor. The N-IND/MEN was prepared by a bead mill method, and the particle size of solid indomethacin was 79-216 nm. In both rat and Göttingen minipig skin, skin penetration of approximately 80% IND-NPs was limited by the stratum corneum (SC), although the penetration of SC was improved by the combination of l-menthol. On the other hand, the treatment of nystatin and dynasore decreased the transdermal penetration of indomethacin in rats and Göttingen minipigs treated with N-IND/MEN. Moreover, in addition to nystatin and dynasore, rottlerin attenuated the transdermal penetration of IND-NPs in the Göttingen minipigs' skin. In conclusion, we found that l-menthol enhanced the SC penetration of IND-NPs. In addition, this study suggests that the SC-passed IND-NPs are absorbed into the skin tissue by energy-dependent endocytosis (CavME, CME, and/or MP pathways) on the epidermis under the SC, resulting in an enhancement in transdermal penetration of IND-NPs. These findings provide significant information for the design of nanomedicines in transdermal formulations.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: