Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 71 papers

α-Synuclein aggregation in the olfactory bulb of middle-aged common marmoset.

  • Reona Kobayashi‎ et al.
  • Neuroscience research‎
  • 2016‎

The synaptic protein α-synuclein has been identified as a major component of Lewy bodies, a pathological hallmark of Parkinson's disease (PD). Prior to the formation of Lewy bodies, mislocalization and aggregation of the α-synuclein in brain tissue is frequently observed in various neurodegenerative diseases. Aberrant accumulation and localization of α-synuclein are also observed in the aging human brain, for which reason aging is regarded as a risk factor for neurodegenerative disease. To investigate changes in α-synuclein properties in the aging brain, we compared α-synuclein immunoreactivity in brain tissue of young (2-years-old) and middle-aged (6-years-old) common marmoset (Callithrix jacchus). Our analyses revealed marked changes in α-synuclein immunoreactivity in the olfactory bulb of common marmosets of these age cohorts. Perikaryal α-synuclein aggregations were formed in the olfactory bulb in middle-aged animals. We also observed signals of α-synuclein accumulation in hippocampus in this cohort; however, unlike in the olfactory bulb, hippocampal α-synuclein signals were localized in the synaptic terminals. We did not observe either of these features in younger marmosets, which suggest that aging may play a role in these phenomena. Our results using common marmoset brain corresponded with the observation that the α-synuclein aggregations were first occurred from olfactory bulb in human normal aged and PD brain. Therefore, common marmoset is expected as useful model for α-synuclein pathology.


Cloning and expression of a novel catechol-O-methyltransferase in common marmosets.

  • Shotaro Uehara‎ et al.
  • The Journal of veterinary medical science‎
  • 2017‎

Catechol-O-methyltransferase (COMT) catalyzes the O-methylation of endogenous catechol amines and estrogens and exogenous catechol-type of drugs. A Parkinson's disease model of common marmoset (Callithrix jacchus) has been widely used in preclinical studies to evaluate inhibitory potential of new drug candidates on marmoset COMT. Despite COMT inhibitors could potentiate the pharmacological action of levodopa on Parkinson's disease in animal models, marmoset COMT cDNA has not yet been identified and characterized. In this study, a cDNA highly homologous to human COMT was cloned from marmoset livers. This cDNA encoded 268 amino acids containing a transmembrane region and critical amino acid residues for catalytic function. The amino acid sequences of marmoset COMT shared high sequence identity (90%) with human COMT. COMT mRNA was expressed in all five tissues tested, including brain, lung, liver, kidney and small intestine, and was more abundant in marmoset liver and kidney. Membrane-bound COMT was immunochemically detected in livers and kidneys, whereas soluble COMT was detected in livers, similar to humans. These results indicated that the molecular characteristics of marmoset COMT were generally similar to the human ortholog.


Efficient derivation of multipotent neural stem/progenitor cells from non-human primate embryonic stem cells.

  • Hiroko Shimada‎ et al.
  • PloS one‎
  • 2012‎

The common marmoset (Callithrix jacchus) is a small New World primate that has been used as a non-human primate model for various biomedical studies. We previously demonstrated that transplantation of neural stem/progenitor cells (NS/PCs) derived from mouse and human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) promote functional locomotor recovery of mouse spinal cord injury models. However, for the clinical application of such a therapeutic approach, we need to evaluate the efficacy and safety of pluripotent stem cell-derived NS/PCs not only by xenotransplantation, but also allotransplantation using non-human primate models to assess immunological rejection and tumorigenicity. In the present study, we established a culture method to efficiently derive NS/PCs as neurospheres from common marmoset ESCs. Marmoset ESC-derived neurospheres could be passaged repeatedly and showed sequential generation of neurons and astrocytes, similar to that of mouse ESC-derived NS/PCs, and gave rise to functional neurons as indicated by calcium imaging. Although marmoset ESC-derived NS/PCs could not differentiate into oligodendrocytes under default culture conditions, these cells could abundantly generate oligodendrocytes by incorporating additional signals that recapitulate in vivo neural development. Moreover, principal component analysis of microarray data demonstrated that marmoset ESC-derived NS/PCs acquired similar gene expression profiles to those of fetal brain-derived NS/PCs by repeated passaging. Therefore, marmoset ESC-derived NS/PCs may be useful not only for accurate evaluation by allotransplantation of NS/PCs into non-human primate models, but are also applicable to analysis of iPSCs established from transgenic disease model marmosets.


Analysis of essential pathways for self-renewal in common marmoset embryonic stem cells.

  • Takenobu Nii‎ et al.
  • FEBS open bio‎
  • 2014‎

Common marmoset (CM) is widely recognized as a useful non-human primate for disease modeling and preclinical studies. Thus, embryonic stem cells (ESCs) derived from CM have potential as an appropriate cell source to test human regenerative medicine using human ESCs. CM ESCs have been established by us and other groups, and can be cultured in vitro. However, the growth factors and downstream pathways for self-renewal of CM ESCs are largely unknown. In this study, we found that basic fibroblast growth factor (bFGF) rather than leukemia inhibitory factor (LIF) promoted CM ESC self-renewal via the activation of phosphatidylinositol-3-kinase (PI3K)-protein kinase B (AKT) pathway on mouse embryonic fibroblast (MEF) feeders. Moreover, bFGF and transforming growth factor β (TGFβ) signaling pathways cooperatively maintained the undifferentiated state of CM ESCs under feeder-free condition. Our findings may improve the culture techniques of CM ESCs and facilitate their use as a preclinical experimental resource for human regenerative medicine.


Developmental trajectories of macroanatomical structures in common marmoset brain.

  • Fumiko Seki‎ et al.
  • Neuroscience‎
  • 2017‎

Morphometry studies of human brain development have revealed characteristics of some growth patterns, such as gray matter (GM) and white matter (WM), but the features that make human neurodevelopment distinct from that in other species remain unclear. Studies of the common marmoset (Callithrix jacchus), a small New World primate, can provide insights into unique features such as cooperative behaviors complementary to those from comparative analyses using mouse and rhesus monkey. In the present study, we analyzed developmental patterns of GM, WM, and cortical regions with volume measurements using longitudinal sample (23 marmosets; 11 male, 12 female) between the ages of one and 30months. Regional analysis using a total of 164 magnetic resonance imaging datasets revealed that GM volume increased before puberty (5.4months), but subsequently declined until adulthood, whereas WM volume increased rapidly before stabilizing around puberty (9.9months). Cortical regions showed similar patterns of increase and decrease, patterns with global GM but differed in the timing of volume peak and degree of decline across regions. The progressive-regressive pattern detected in both global and cortical GM was well correlated to phases of synaptogenesis and synaptic pruning reported in previous marmoset studies. A rapid increase in WM in early development may represent a distinctive aspect of human neurodevelopment. These findings suggest that studies of marmoset brain development can provide valuable comparative information that will facilitate a deeper understanding of human brain growth and neurodevelopmental disorders.


Abundant occurrence of basal radial glia in the subventricular zone of embryonic neocortex of a lissencephalic primate, the common marmoset Callithrix jacchus.

  • Iva Kelava‎ et al.
  • Cerebral cortex (New York, N.Y. : 1991)‎
  • 2012‎

Subventricular zone (SVZ) progenitors are a hallmark of the developing neocortex. Recent studies described a novel type of SVZ progenitor that retains a basal process at mitosis, sustains expression of radial glial markers, and is capable of self-renewal. These progenitors, referred to here as basal radial glia (bRG), occur at high relative abundance in the SVZ of gyrencephalic primates (human) and nonprimates (ferret) but not lissencephalic rodents (mouse). Here, we analyzed the occurrence of bRG cells in the embryonic neocortex of the common marmoset Callithrix jacchus, a near-lissencephalic primate. bRG cells, expressing Pax6, Sox2 (but not Tbr2), glutamate aspartate transporter, and glial fibrillary acidic protein and retaining a basal process at mitosis, occur at similar relative abundance in the marmoset SVZ as in human and ferret. The proportion of progenitors in M-phase was lower in embryonic marmoset than developing ferret neocortex, raising the possibility of a longer cell cycle. Fitting the gyrification indices of 26 anthropoid species to an evolutionary model suggested that the marmoset evolved from a gyrencephalic ancestor. Our results suggest that a high relative abundance of bRG cells may be necessary, but is not sufficient, for gyrencephaly and that the marmoset's lissencephaly evolved secondarily by changing progenitor parameters other than progenitor type.


Brain/MINDS: A Japanese National Brain Project for Marmoset Neuroscience.

  • Hideyuki Okano‎ et al.
  • Neuron‎
  • 2016‎

Brain/MINDS (Brain Mapping by Integrated Neurotechnologies for Disease Studies) is a national brain project started by Japan in 2014. With the goal of developing the common marmoset as a model animal for neuroscience, the project aims to build a multiscale marmoset brain map, develop new technologies for experimentalists, create transgenic lines for brain disease modeling, and integrate translational findings from the clinical biomarker landscape. Brain/MINDS will collaborate with global brain projects to share technologies and resources.


Current progress of rehabilitative strategies in stem cell therapy for spinal cord injury: a review.

  • Syoichi Tashiro‎ et al.
  • NPJ Regenerative medicine‎
  • 2021‎

Stem cell-based regenerative therapy has opened an avenue for functional recovery of patients with spinal cord injury (SCI). Regenerative rehabilitation is attracting wide attention owing to its synergistic effects, feasibility, non-invasiveness, and diverse and systemic properties. In this review article, we summarize the features of rehabilitation, describe the mechanism of combinatorial treatment, and discuss regenerative rehabilitation in the context of SCI. Although conventional rehabilitative methods have commonly been implemented alone, especially in studies of acute-to-subacute SCI, the combinatorial effects of intensive and advanced methods, including various neurorehabilitative approaches, have also been reported. Separating the concept of combined rehabilitation from regenerative rehabilitation, we suggest that the main roles of regenerative rehabilitation can be categorized as conditioning/reconditioning, functional training, and physical exercise, all of which are indispensable for enhancing functional recovery achieved using stem cell therapies.


Evaluating the efficacy of small molecules for neural differentiation of common marmoset ESCs and iPSCs.

  • Sho Yoshimatsu‎ et al.
  • Neuroscience research‎
  • 2020‎

The common marmoset (marmoset; Callithrix jacchus) harbors various desired features as a non-human primate (NHP) model for neuroscience research. Recently, efforts have been made to induce neural cells in vitro from marmoset pluripotent stem cells (PSCs), including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), which are characterized by their capacity to differentiate into all cell types from the three germ layers. Successful generation of marmoset neural cells is not only invaluable for understanding neural development and for modeling neurodegenerative and psychiatric disorders, but is also necessary for the phenotypic screening of genetically-modified marmosets. However, differences in the differentiation propensity among PSC lines hamper the applicability and the reproducibility of differentiation methods. To overcome this limitation, we evaluated the efficacy of small molecules for neural differentiation of marmoset ESCs (cjESCs) and iPSCs using multiple differentiation methods. By immunochemical and transcriptomic analyses, we confirmed that our methods using the small molecules are efficient for various differentiation protocols by either enhancing the yield of a mixture of neural cells including both neurons and glial cells, or a pure population of neurons. Collectively, our findings optimized in vitro neural differentiation methods for marmoset PSCs, which would ultimately help enhance the utility of the animal model in neuroscience.


A shift of brain network hub after spinal cord injury.

  • Kohei Matsubayashi‎ et al.
  • Frontiers in molecular neuroscience‎
  • 2023‎

Spinal cord injury (SCI) causes severe sequelae and significant social loss, depending on the extent of the damage. Most previous studies have focused on the pathology of the spinal cord to develop treatments for SCI. However, it is now known that the brain, which is not directly damaged, also undergoes morphological changes after spinal cord injury, which could affect natural recovery and treatment. In recent years, magnetic resonance imaging (MRI) has been developed to analyze functional changes in the brain. Resting-state functional MRI (rsfMRI), which captures brain activity at rest, can calculate functional connections between brain areas and identify central hubs by network analysis.


Highly efficient induction of primate iPS cells by combining RNA transfection and chemical compounds.

  • Toshiaki Watanabe‎ et al.
  • Genes to cells : devoted to molecular & cellular mechanisms‎
  • 2019‎

Induced pluripotent stem (iPS) cells hold great promise for regenerative medicine and the treatment of various diseases. Before proceeding to clinical trials, it is important to test the efficacy and safety of iPS cell-based treatments using experimental animals. The common marmoset is a new world monkey widely used in biomedical studies. However, efficient methods that could generate iPS cells from a variety of cells have not been established. Here, we report that marmoset cells are efficiently reprogrammed into iPS cells by combining RNA transfection and chemical compounds. Using this novel combination, we generate transgene integration-free marmoset iPS cells from a variety of cells that are difficult to reprogram using conventional RNA transfection method. Furthermore, we show this is similarly effective for human and cynomolgus monkey iPS cell generation. Thus, the addition of chemical compounds during RNA transfection greatly facilitates reprogramming and efficient generation of completely integration-free safe iPS cells in primates, particularly from difficult-to-reprogram cells.


Single cell transcriptome analysis of human, marmoset and mouse embryos reveals common and divergent features of preimplantation development.

  • Thorsten Boroviak‎ et al.
  • Development (Cambridge, England)‎
  • 2018‎

The mouse embryo is the canonical model for mammalian preimplantation development. Recent advances in single cell profiling allow detailed analysis of embryogenesis in other eutherian species, including human, to distinguish conserved from divergent regulatory programs and signalling pathways in the rodent paradigm. Here, we identify and compare transcriptional features of human, marmoset and mouse embryos by single cell RNA-seq. Zygotic genome activation correlates with the presence of polycomb repressive complexes in all three species, while ribosome biogenesis emerges as a predominant attribute in primate embryos, supporting prolonged translation of maternally deposited RNAs. We find that transposable element expression signatures are species, stage and lineage specific. The pluripotency network in the primate epiblast lacks certain regulators that are operative in mouse, but encompasses WNT components and genes associated with trophoblast specification. Sequential activation of GATA6, SOX17 and GATA4 markers of primitive endoderm identity is conserved in primates. Unexpectedly, OTX2 is also associated with primitive endoderm specification in human and non-human primate blastocysts. Our cross-species analysis demarcates both conserved and primate-specific features of preimplantation development, and underscores the molecular adaptability of early mammalian embryogenesis.


Lineage-Specific Profiling Delineates the Emergence and Progression of Naive Pluripotency in Mammalian Embryogenesis.

  • Thorsten Boroviak‎ et al.
  • Developmental cell‎
  • 2015‎

Naive pluripotency is manifest in the preimplantation mammalian embryo. Here we determine transcriptome dynamics of mouse development from the eight-cell stage to postimplantation using lineage-specific RNA sequencing. This method combines high sensitivity and reporter-based fate assignment to acquire the full spectrum of gene expression from discrete embryonic cell types. We define expression modules indicative of developmental state and temporal regulatory patterns marking the establishment and dissolution of naive pluripotency in vivo. Analysis of embryonic stem cells and diapaused embryos reveals near-complete conservation of the core transcriptional circuitry operative in the preimplantation epiblast. Comparison to inner cell masses of marmoset primate blastocysts identifies a similar complement of pluripotency factors but use of alternative signaling pathways. Embryo culture experiments further indicate that marmoset embryos utilize WNT signaling during early lineage segregation, unlike rodents. These findings support a conserved transcription factor foundation for naive pluripotency while revealing species-specific regulatory features of lineage segregation.


Resequencing of the common marmoset genome improves genome assemblies and gene-coding sequence analysis.

  • Kengo Sato‎ et al.
  • Scientific reports‎
  • 2015‎

The first draft of the common marmoset (Callithrix jacchus) genome was published by the Marmoset Genome Sequencing and Analysis Consortium. The draft was based on whole-genome shotgun sequencing, and the current assembly version is Callithrix_jacches-3.2.1, but there still exist 187,214 undetermined gap regions and supercontigs and relatively short contigs that are unmapped to chromosomes in the draft genome. We performed resequencing and assembly of the genome of common marmoset by deep sequencing with high-throughput sequencing technology. Several different sequence runs using Illumina sequencing platforms were executed, and 181 Gbp of high-quality bases including mate-pairs with long insert lengths of 3, 8, 20, and 40 Kbp were obtained, that is, approximately 60× coverage. The resequencing significantly improved the MGSAC draft genome sequence. The N50 of the contigs, which is a statistical measure used to evaluate assembly quality, doubled. As a result, 51% of the contigs (total length: 299 Mbp) that were unmapped to chromosomes in the MGSAC draft were merged with chromosomal contigs, and the improved genome sequence helped to detect 5,288 new genes that are homologous to human cDNAs and the gaps in 5,187 transcripts of the Ensembl gene annotations were completely filled.


Mapping orbitofrontal-limbic maturation in non-human primates: A longitudinal magnetic resonance imaging study.

  • Akiko Uematsu‎ et al.
  • NeuroImage‎
  • 2017‎

Brain development involves spatiotemporally complex microstructural changes. A number of neuropsychiatric disorders are linked to the neural processes of development and aging. Thus, it is important to understanding the typical developmental patterns of various brain structures, which will help to define critical periods of vulnerability for neural maturation, as well as anatomical mechanisms of brain structure-related neuropathology. In this study, we used magnetic resonance imaging to assess development of the orbitofrontal cortex, cingulate cortex, amygdala, and hippocampus in a non-human primate species, the common marmoset (Callithrix jacchus). We collected a total of 114 T2-weighted and 91 diffusion-weighted scans from 23 animals from infancy to early adulthood. Quantitative and qualitative evaluation of age-related brain growth patterns showed non-linear structural developmental changes in all measured brain regions, consistent with reported human data. Overall, robust volumetric growth was observed from 1 to 3 months of age (from infancy to the early juvenile period). This rapid brain growth was associated with the largest decrease in mean, axial, and radial diffusivities of diffusion tensor imaging in all brain regions, suggesting an increase in the number and size of cells, dendrites, and spines during this period. After this developmental period, the volume of various brain regions steadily increased until adolescence (7-13 months of age, depending on the region). Further, structural connectivity derived from tractography data in various brain regions continuously changed from infancy to adolescence, suggesting that the increase in brain volume was related to continued axonal myelination during adolescence. Thereafter, the volume of the cortical regions decreased considerably, while there was no change in subcortical regions. Familial factors, rather than sex, contributed the development of the front-limbic brain regions. Overall, this study provides further data on the factors and timing important for normal brain development, and suggest that the common marmoset is a useful animal model for human neural development.


Two-photon imaging of neuronal activity in motor cortex of marmosets during upper-limb movement tasks.

  • Teppei Ebina‎ et al.
  • Nature communications‎
  • 2018‎

Two-photon imaging in behaving animals has revealed neuronal activities related to behavioral and cognitive function at single-cell resolution. However, marmosets have posed a challenge due to limited success in training on motor tasks. Here we report the development of protocols to train head-fixed common marmosets to perform upper-limb movement tasks and simultaneously perform two-photon imaging. After 2-5 months of training sessions, head-fixed marmosets can control a manipulandum to move a cursor to a target on a screen. We conduct two-photon calcium imaging of layer 2/3 neurons in the motor cortex during this motor task performance, and detect task-relevant activity from multiple neurons at cellular and subcellular resolutions. In a two-target reaching task, some neurons show direction-selective activity over the training days. In a short-term force-field adaptation task, some neurons change their activity when the force field is on. Two-photon calcium imaging in behaving marmosets may become a fundamental technique for determining the spatial organization of the cortical dynamics underlying action and cognition.


Cellular composition and organization of the subventricular zone and rostral migratory stream in the adult and neonatal common marmoset brain.

  • Kazunobu Sawamoto‎ et al.
  • The Journal of comparative neurology‎
  • 2011‎

The adult subventricular zone (SVZ) of the lateral ventricle contains neural stem cells. In rodents, these cells generate neuroblasts that migrate as chains toward the olfactory bulb along the rostral migratory stream (RMS). The neural-stem-cell niche at the ventricular wall is conserved in various animal species, including primates. However, it is unclear how the SVZ and RMS organization in nonhuman primates relates to that of rodents and humans. Here we studied the SVZ and RMS of the adult and neonatal common marmoset (Callithrix jacchus), a New World primate used widely in neuroscience, by electron microscopy, and immunohistochemical detection of cell-type-specific markers. The marmoset SVZ contained cells similar to type B, C, and A cells of the rodent SVZ in their marker expression and morphology. The adult marmoset SVZ had a three-layer organization, as in the human brain, with ependymal, hypocellular, and astrocyte-ribbon layers. However, the hypocellular layer was very thin or absent in the adult-anterior and neonatal SVZ. Anti-PSA-NCAM staining of the anterior SVZ in whole-mount ventricular wall preparations of adult marmosets revealed an extensive network of elongated cell aggregates similar to the neuroblast chains in rodents. Time-lapse recordings of marmoset SVZ explants cultured in Matrigel showed the neuroblasts migrating in chains, like rodent type A cells. These results suggest that some features of neurogenesis and neuronal migration in the SVZ are common to marmosets, humans, and rodents. This basic description of the adult and neonatal marmoset SVZ will be useful for future studies on adult neurogenesis in primates.


Time-dependent changes in the microenvironment of injured spinal cord affects the therapeutic potential of neural stem cell transplantation for spinal cord injury.

  • Soraya Nishimura‎ et al.
  • Molecular brain‎
  • 2013‎

The transplantation of neural stem/progenitor cells (NS/PCs) at the sub-acute phase of spinal cord injury, but not at the chronic phase, can promote functional recovery. However, the reasons for this difference and whether it involves the survival and/or fate of grafted cells under these two conditions remain unclear. To address this question, NS/PC transplantation was performed after contusive spinal cord injury in adult mice at the sub-acute and chronic phases.


MRI characterization of paranodal junction failure and related spinal cord changes in mice.

  • Morito Takano‎ et al.
  • PloS one‎
  • 2012‎

The paranodal junction is a specialized axon-glia contact zone that is important for normal neuronal activity and behavioral locomotor function in the central nervous system (CNS). Histological examination has been the only method for detecting pathological paranodal junction conditions. Recently, diffusion tensor MRI (DTI) has been used to detect microstructural changes in various CNS diseases. This study was conducted to determine whether MRI and DTI could detect structural changes in the paranodal junctions of the spinal cord in cerebroside sulfotransferase knock-out (CST-KO) mice. Here, we showed that high-resolution MRI and DTI characteristics can reflect paranodal junction failure in CST-KO mice. We found significantly lower T1 times and significantly higher T2 times in the spinal cord MRIs of CST-KO mice as compared to wild-type (WT) mice. Spinal cord DTI showed significantly lower axial diffusivity and significantly higher radial diffusivity in CST-KO mice as compared to WT mice. In contrast, the histological differences in the paranodal junctions of WT and CST-KO mice were so subtle that electron microscopy or immunohistological analyses were necessary to detect them. We also measured gait disturbance in the CST-KO mice, and determined the conduction latency by electrophysiology. These findings demonstrate the potential of using MRI and DTI to evaluate white matter disorders that involve paranodal junction failure.


Induction of macrophage-like immunosuppressive cells from common marmoset ES cells by stepwise differentiation with DZNep.

  • Hyuma Tsuji‎ et al.
  • Scientific reports‎
  • 2020‎

Recent progress in regenerative medicine has enabled the utilization of pluripotent stem cells (PSCs) as the resource of therapeutic cells/tissue. However, immune suppression is still needed when the donor-recipient combination is allogeneic. We have reported previously that mouse PSCs-derived immunosuppressive cells contribute to prolonged survival of grafts derived from the same mouse PSCs in allogeneic recipients. For its clinical application, a preclinical study using non-human primates such as common marmoset must be performed. In this study, we established the induction protocol of immunosuppressive cells from common marmoset ES cells. Although similar immunosuppressive macrophages could not be induced by same protocol as that for mouse PSCs, we employed an inhibitor for histone methyltransferase, DZNep, and succeeded to induce them. The DZNep-treated macrophage-like cells expressed several immunosuppressive molecules and significantly inhibited allogeneic mixed lymphocyte reaction. The immunosuppressive cells from non-human primate ESCs will help to establish an immunoregulating strategy in regenerative medicine using PSCs.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: