Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 133 papers

DeepCAGE Transcriptomics Reveal an Important Role of the Transcription Factor MAFB in the Lymphatic Endothelium.

  • Lothar C Dieterich‎ et al.
  • Cell reports‎
  • 2015‎

VEGF-C/VEGFR-3 signaling plays a central role in lymphatic development, regulating the budding of lymphatic progenitor cells from embryonic veins and maintaining the expression of PROX1 during later developmental stages. However, how VEGFR-3 activation translates into target gene expression is still not completely understood. We used cap analysis of gene expression (CAGE) RNA sequencing to characterize the transcriptional changes invoked by VEGF-C in LECs and to identify the transcription factors (TFs) involved. We found that MAFB, a TF involved in differentiation of various cell types, is rapidly induced and activated by VEGF-C. MAFB induced expression of PROX1 as well as other TFs and markers of differentiated LECs, indicating a role in the maintenance of the mature LEC phenotype. Correspondingly, E14.5 Mafb(-/-) embryos showed impaired lymphatic patterning in the skin. This suggests that MAFB is an important TF involved in lymphangiogenesis.


Remodeling of retrotransposon elements during epigenetic induction of adult visual cortical plasticity by HDAC inhibitors.

  • Andreas Lennartsson‎ et al.
  • Epigenetics & chromatin‎
  • 2015‎

The capacity for plasticity in the adult brain is limited by the anatomical traces laid down during early postnatal life. Removing certain molecular brakes, such as histone deacetylases (HDACs), has proven to be effective in recapitulating juvenile plasticity in the mature visual cortex (V1). We investigated the chromatin structure and transcriptional control by genome-wide sequencing of DNase I hypersensitive sites (DHSS) and cap analysis of gene expression (CAGE) libraries after HDAC inhibition by valproic acid (VPA) in adult V1.


Cell-cycle-independent transitions in temporal identity of mammalian neural progenitor cells.

  • Mayumi Okamoto‎ et al.
  • Nature communications‎
  • 2016‎

During cerebral development, many types of neurons are sequentially generated by self-renewing progenitor cells called apical progenitors (APs). Temporal changes in AP identity are thought to be responsible for neuronal diversity; however, the mechanisms underlying such changes remain largely unknown. Here we perform single-cell transcriptome analysis of individual progenitors at different developmental stages, and identify a subset of genes whose expression changes over time but is independent of differentiation status. Surprisingly, the pattern of changes in the expression of such temporal-axis genes in APs is unaffected by cell-cycle arrest. Consistent with this, transient cell-cycle arrest of APs in vivo does not prevent descendant neurons from acquiring their correct laminar fates. Analysis of cultured APs reveals that transitions in AP gene expression are driven by both cell-intrinsic and -extrinsic mechanisms. These results suggest that the timing mechanisms controlling AP temporal identity function independently of cell-cycle progression and Notch activation mode.


Functional annotation of the vlinc class of non-coding RNAs using systems biology approach.

  • Georges St Laurent‎ et al.
  • Nucleic acids research‎
  • 2016‎

Functionality of the non-coding transcripts encoded by the human genome is the coveted goal of the modern genomics research. While commonly relied on the classical methods of forward genetics, integration of different genomics datasets in a global Systems Biology fashion presents a more productive avenue of achieving this very complex aim. Here we report application of a Systems Biology-based approach to dissect functionality of a newly identified vast class of very long intergenic non-coding (vlinc) RNAs. Using highly quantitative FANTOM5 CAGE dataset, we show that these RNAs could be grouped into 1542 novel human genes based on analysis of insulators that we show here indeed function as genomic barrier elements. We show that vlinc RNAs genes likely function in cisto activate nearby genes. This effect while most pronounced in closely spaced vlinc RNA-gene pairs can be detected over relatively large genomic distances. Furthermore, we identified 101 vlinc RNA genes likely involved in early embryogenesis based on patterns of their expression and regulation. We also found another 109 such genes potentially involved in cellular functions also happening at early stages of development such as proliferation, migration and apoptosis. Overall, we show that Systems Biology-based methods have great promise for functional annotation of non-coding RNAs.


Telomerase reverse transcriptase regulates microRNAs.

  • Timo Lassmann‎ et al.
  • International journal of molecular sciences‎
  • 2015‎

MicroRNAs are small non-coding RNAs that inhibit the translation of target mRNAs. In humans, most microRNAs are transcribed by RNA polymerase II as long primary transcripts and processed by sequential cleavage of the two RNase III enzymes, DROSHA and DICER, into precursor and mature microRNAs, respectively. Although the fundamental functions of microRNAs in RNA silencing have been gradually uncovered, less is known about the regulatory mechanisms of microRNA expression. Here, we report that telomerase reverse transcriptase (TERT) extensively affects the expression levels of mature microRNAs. Deep sequencing-based screens of short RNA populations revealed that the suppression of TERT resulted in the downregulation of microRNAs expressed in THP-1 cells and HeLa cells. Primary and precursor microRNA levels were also reduced under the suppression of TERT. Similar results were obtained with the suppression of either BRG1 (also called SMARCA4) or nucleostemin, which are proteins interacting with TERT and functioning beyond telomeres. These results suggest that TERT regulates microRNAs at the very early phases in their biogenesis, presumably through non-telomerase mechanism(s).


Promoter-level expression clustering identifies time development of transcriptional regulatory cascades initiated by ErbB receptors in breast cancer cells.

  • Marco Mina‎ et al.
  • Scientific reports‎
  • 2015‎

The analysis of CAGE (Cap Analysis of Gene Expression) time-course has been proposed by the FANTOM5 Consortium to extend the understanding of the sequence of events facilitating cell state transition at the level of promoter regulation. To identify the most prominent transcriptional regulations induced by growth factors in human breast cancer, we apply here the Complexity Invariant Dynamic Time Warping motif EnRichment (CIDER) analysis approach to the CAGE time-course datasets of MCF-7 cells stimulated by epidermal growth factor (EGF) or heregulin (HRG). We identify a multi-level cascade of regulations rooted by the Serum Response Factor (SRF) transcription factor, connecting the MAPK-mediated transduction of the HRG stimulus to the negative regulation of the MAPK pathway by the members of the DUSP family phosphatases. The finding confirms the known primary role of FOS and FOSL1, members of AP-1 family, in shaping gene expression in response to HRG induction. Moreover, we identify a new potential regulation of DUSP5 and RARA (known to antagonize the transcriptional regulation induced by the estrogen receptors) by the activity of the AP-1 complex, specific to HRG response. The results indicate that a divergence in AP-1 regulation determines cellular changes of breast cancer cells stimulated by ErbB receptors.


Technical Advance: Transcription factor, promoter, and enhancer utilization in human myeloid cells.

  • Anagha Joshi‎ et al.
  • Journal of leukocyte biology‎
  • 2015‎

The generation of myeloid cells from their progenitors is regulated at the level of transcription by combinatorial control of key transcription factors influencing cell-fate choice. To unravel the global dynamics of this process at the transcript level, we generated transcription profiles for 91 human cell types of myeloid origin by use of CAGE profiling. The CAGE sequencing of these samples has allowed us to investigate diverse aspects of transcription control during myelopoiesis, such as identification of novel transcription factors, miRNAs, and noncoding RNAs specific to the myeloid lineage. We further reconstructed a transcription regulatory network by clustering coexpressed transcripts and associating them with enriched cis-regulatory motifs. With the use of the bidirectional expression as a proxy for enhancers, we predicted over 2000 novel enhancers, including an enhancer 38 kb downstream of IRF8 and an intronic enhancer in the KIT gene locus. Finally, we highlighted relevance of these data to dissect transcription dynamics during progressive maturation of granulocyte precursors. A multifaceted analysis of the myeloid transcriptome is made available (www.myeloidome.roslin.ed.ac.uk). This high-quality dataset provides a powerful resource to study transcriptional regulation during myelopoiesis and to infer the likely functions of unannotated genes in human innate immunity.


Transcribed enhancers lead waves of coordinated transcription in transitioning mammalian cells.

  • Erik Arner‎ et al.
  • Science (New York, N.Y.)‎
  • 2015‎

Although it is generally accepted that cellular differentiation requires changes to transcriptional networks, dynamic regulation of promoters and enhancers at specific sets of genes has not been previously studied en masse. Exploiting the fact that active promoters and enhancers are transcribed, we simultaneously measured their activity in 19 human and 14 mouse time courses covering a wide range of cell types and biological stimuli. Enhancer RNAs, then messenger RNAs encoding transcription factors, dominated the earliest responses. Binding sites for key lineage transcription factors were simultaneously overrepresented in enhancers and promoters active in each cellular system. Our data support a highly generalizable model in which enhancer transcription is the earliest event in successive waves of transcriptional change during cellular differentiation or activation.


Integration of genetics and miRNA-target gene network identified disease biology implicated in tissue specificity.

  • Saori Sakaue‎ et al.
  • Nucleic acids research‎
  • 2018‎

MicroRNAs (miRNAs) modulate the post-transcriptional regulation of target genes and are related to biology of complex human traits, but genetic landscape of miRNAs remains largely unknown. Given the strikingly tissue-specific miRNA expression profiles, we here expand a previous method to quantitatively evaluate enrichment of genome-wide association study (GWAS) signals on miRNA-target gene networks (MIGWAS) to further estimate tissue-specific enrichment. Our approach integrates tissue-specific expression profiles of miRNAs (∼1800 miRNAs in 179 cells) with GWAS to test whether polygenic signals enrich in miRNA-target gene networks and whether they fall within specific tissues. We applied MIGWAS to 49 GWASs (nTotal = 3 520 246), and successfully identified biologically relevant tissues. Further, MIGWAS could point miRNAs as candidate biomarkers of the trait. As an illustrative example, we performed differentially expressed miRNA analysis between rheumatoid arthritis (RA) patients and healthy controls (n = 63). We identified novel biomarker miRNAs (e.g. hsa-miR-762) by integrating differentially expressed miRNAs with MIGWAS results for RA, as well as novel associated loci with significant genetic risk (rs56656810 at MIR762 at 16q11; n = 91 482, P = 3.6 × 10-8). Our result highlighted that miRNA-target gene network contributes to human disease genetics in a cell type-specific manner, which could yield an efficient screening of miRNAs as promising biomarkers.


Landscape of transcription in human cells.

  • Sarah Djebali‎ et al.
  • Nature‎
  • 2012‎

Eukaryotic cells make many types of primary and processed RNAs that are found either in specific subcellular compartments or throughout the cells. A complete catalogue of these RNAs is not yet available and their characteristic subcellular localizations are also poorly understood. Because RNA represents the direct output of the genetic information encoded by genomes and a significant proportion of a cell's regulatory capabilities are focused on its synthesis, processing, transport, modification and translation, the generation of such a catalogue is crucial for understanding genome function. Here we report evidence that three-quarters of the human genome is capable of being transcribed, as well as observations about the range and levels of expression, localization, processing fates, regulatory regions and modifications of almost all currently annotated and thousands of previously unannotated RNAs. These observations, taken together, prompt a redefinition of the concept of a gene.


The FANTOM5 collection, a data series underpinning mammalian transcriptome atlases in diverse cell types.

  • Hideya Kawaji‎ et al.
  • Scientific data‎
  • 2017‎

The latest project from the FANTOM consortium, an international collaborative effort initiated by RIKEN, generated atlases of transcriptomes, in particular promoters, transcribed enhancers, and long-noncoding RNAs, across a diverse set of mammalian cell types. Here, we introduce the FANTOM5 collection, bringing together data descriptors, articles and analyses of FANTOM5 data published across the Nature Research journals. Associated data are openly available for reuse by all.


Genome-scale regression analysis reveals a linear relationship for promoters and enhancers after combinatorial drug treatment.

  • Trisevgeni Rapakoulia‎ et al.
  • Bioinformatics (Oxford, England)‎
  • 2017‎

Drug combination therapy for treatment of cancers and other multifactorial diseases has the potential of increasing the therapeutic effect, while reducing the likelihood of drug resistance. In order to reduce time and cost spent in comprehensive screens, methods are needed which can model additive effects of possible drug combinations.


Linking FANTOM5 CAGE peaks to annotations with CAGEscan.

  • Nicolas Bertin‎ et al.
  • Scientific data‎
  • 2017‎

The FANTOM5 expression atlas is a quantitative measurement of the activity of nearly 200,000 promoter regions across nearly 2,000 different human primary cells, tissue types and cell lines. Generation of this atlas was made possible by the use of CAGE, an experimental approach to localise transcription start sites at single-nucleotide resolution by sequencing the 5' ends of capped RNAs after their conversion to cDNAs. While 50% of CAGE-defined promoter regions could be confidently associated to adjacent transcriptional units, nearly 100,000 promoter regions remained gene-orphan. To address this, we used the CAGEscan method, in which random-primed 5'-cDNAs are paired-end sequenced. Pairs starting in the same region are assembled in transcript models called CAGEscan clusters. Here, we present the production and quality control of CAGEscan libraries from 56 FANTOM5 RNA sources, which enhances the FANTOM5 expression atlas by providing experimental evidence associating core promoter regions with their cognate transcripts.


Foxg1 coordinates the switch from nonradially to radially migrating glutamatergic subtypes in the neocortex through spatiotemporal repression.

  • Takuma Kumamoto‎ et al.
  • Cell reports‎
  • 2013‎

The specification of neuronal subtypes in the cerebral cortex proceeds in a temporal manner; however, the regulation of the transitions between the sequentially generated subtypes is poorly understood. Here, we report that the forkhead box transcription factor Foxg1 coordinates the production of neocortical projection neurons through the global repression of a default gene program. The delayed activation of Foxg1 was necessary and sufficient to induce deep-layer neurogenesis, followed by a sequential wave of upper-layer neurogenesis. A genome-wide analysis revealed that Foxg1 binds to mammalian-specific noncoding sequences to repress over 12 transcription factors expressed in early progenitors, including Ebf2/3, Dmrt3, Dmrta1, and Eya2. These findings reveal an unexpected prolonged competence of progenitors to initiate corticogenesis at a progressed stage during development and identify Foxg1 as a critical initiator of neocorticogenesis through spatiotemporal repression, a system that balances the production of nonradially and radially migrating glutamatergic subtypes during mammalian cortical expansion.


Construction of representative transcript and protein sets of human, mouse, and rat as a platform for their transcriptome and proteome analysis.

  • Takeya Kasukawa‎ et al.
  • Genomics‎
  • 2004‎

The number of mammalian transcripts identified by full-length cDNA projects and genome sequencing projects is increasing remarkably. Clustering them into a strictly nonredundant and comprehensive set provides a platform for functional analysis of the transcriptome and proteome, but the quality of the clustering and predictive usefulness have previously required manual curation to identify truncated transcripts and inappropriate clustering of closely related sequences. A Representative Transcript and Protein Sets (RTPS) pipeline was previously designed to identify the nonredundant and comprehensive set of mouse transcripts based on clustering of a large mouse full-length cDNA set (FANTOM2). Here we propose an alternative method that is more robust, requires less manual curation, and is applicable to other organisms in addition to mouse. RTPSs of human, mouse, and rat have been produced by this method and used for validation. Their comprehensiveness and quality are discussed by comparison with other clustering approaches. The RTPSs are available at .


Genome-wide investigation of in vivo EGR-1 binding sites in monocytic differentiation.

  • Atsutaka Kubosaki‎ et al.
  • Genome biology‎
  • 2009‎

Immediate early genes are considered to play important roles in dynamic gene regulatory networks following exposure to appropriate stimuli. One of the immediate early genes, early growth response gene 1 (EGR-1), has been implicated in differentiation of human monoblastoma cells along the monocytic commitment following treatment with phorbol ester. EGR-1 has been thought to work as a modifier of monopoiesis, but the precise function of EGR-1 in monocytic differentiation has not been fully elucidated.


An RNA-dependent RNA polymerase formed by TERT and the RMRP RNA.

  • Yoshiko Maida‎ et al.
  • Nature‎
  • 2009‎

Constitutive expression of telomerase in human cells prevents the onset of senescence and crisis by maintaining telomere homeostasis. However, accumulating evidence suggests that the human telomerase reverse transcriptase catalytic subunit (TERT) contributes to cell physiology independently of its ability to elongate telomeres. Here we show that TERT interacts with the RNA component of mitochondrial RNA processing endoribonuclease (RMRP), a gene that is mutated in the inherited pleiotropic syndrome cartilage-hair hypoplasia. Human TERT and RMRP form a distinct ribonucleoprotein complex that has RNA-dependent RNA polymerase (RdRP) activity and produces double-stranded RNAs that can be processed into small interfering RNA in a Dicer (also known as DICER1)-dependent manner. These observations identify a mammalian RdRP composed of TERT in complex with RMRP.


The combination of gene perturbation assay and ChIP-chip reveals functional direct target genes for IRF8 in THP-1 cells.

  • Atsutaka Kubosaki‎ et al.
  • Molecular immunology‎
  • 2010‎

Gene regulatory networks in living cells are controlled by the interaction of multiple cell type-specific transcription regulators with DNA binding sites in target genes. Interferon regulatory factor 8 (IRF8), also known as interferon consensus sequence binding protein (ICSBP), is a transcription factor expressed predominantly in myeloid and lymphoid cell lineages. To find the functional direct target genes of IRF8, the gene expression profiles of siRNA knockdown samples and genome-wide binding locations by ChIP-chip were analyzed in THP-1 myelomonocytic leukemia cells. Consequently, 84 genes were identified as functional direct targets. The ETS family transcription factor PU.1, also known as SPI1, binds to IRF8 and regulates basal transcription in macrophages. Using the same approach, we identified 53 direct target genes of PU.1; these overlapped with 19 IRF8 targets. These 19 genes included key molecules of IFN signaling such as OAS1 and IRF9, but excluded other IFN-related genes amongst the IRF8 functional direct target genes. We suggest that IRF8 and PU.1 can have both combined, and independent actions on different promoters in myeloid cells.


The human PINK1 locus is regulated in vivo by a non-coding natural antisense RNA during modulation of mitochondrial function.

  • Camilla Scheele‎ et al.
  • BMC genomics‎
  • 2007‎

Mutations in the PTEN induced putative kinase 1 (PINK1) are implicated in early-onset Parkinson's disease. PINK1 is expressed abundantly in mitochondria rich tissues, such as skeletal muscle, where it plays a critical role determining mitochondrial structural integrity in Drosophila.


Shared activity patterns arising at genetic susceptibility loci reveal underlying genomic and cellular architecture of human disease.

  • J Kenneth Baillie‎ et al.
  • PLoS computational biology‎
  • 2018‎

Genetic variants underlying complex traits, including disease susceptibility, are enriched within the transcriptional regulatory elements, promoters and enhancers. There is emerging evidence that regulatory elements associated with particular traits or diseases share similar patterns of transcriptional activity. Accordingly, shared transcriptional activity (coexpression) may help prioritise loci associated with a given trait, and help to identify underlying biological processes. Using cap analysis of gene expression (CAGE) profiles of promoter- and enhancer-derived RNAs across 1824 human samples, we have analysed coexpression of RNAs originating from trait-associated regulatory regions using a novel quantitative method (network density analysis; NDA). For most traits studied, phenotype-associated variants in regulatory regions were linked to tightly-coexpressed networks that are likely to share important functional characteristics. Coexpression provides a new signal, independent of phenotype association, to enable fine mapping of causative variants. The NDA coexpression approach identifies new genetic variants associated with specific traits, including an association between the regulation of the OCT1 cation transporter and genetic variants underlying circulating cholesterol levels. NDA strongly implicates particular cell types and tissues in disease pathogenesis. For example, distinct groupings of disease-associated regulatory regions implicate two distinct biological processes in the pathogenesis of ulcerative colitis; a further two separate processes are implicated in Crohn's disease. Thus, our functional analysis of genetic predisposition to disease defines new distinct disease endotypes. We predict that patients with a preponderance of susceptibility variants in each group are likely to respond differently to pharmacological therapy. Together, these findings enable a deeper biological understanding of the causal basis of complex traits.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: