Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 49 papers

Potent and Selective Covalent Quinazoline Inhibitors of KRAS G12C.

  • Mei Zeng‎ et al.
  • Cell chemical biology‎
  • 2017‎

Targeted covalent small molecules have shown promise for cancers driven by KRAS G12C. Allosteric compounds that access an inducible pocket formed by movement of a dynamic structural element in KRAS, switch II, have been reported, but these compounds require further optimization to enable their advancement into clinical development. We demonstrate that covalent quinazoline-based switch II pocket (SIIP) compounds effectively suppress GTP loading of KRAS G12C, MAPK phosphorylation, and the growth of cancer cells harboring G12C. Notably we find that adding an amide substituent to the quinazoline scaffold allows additional interactions with KRAS G12C, and remarkably increases the labeling efficiency, potency, and selectivity of KRAS G12C inhibitors. Structural studies using X-ray crystallography reveal a new conformation of SIIP and key interactions made by substituents located at the quinazoline 2-, 4-, and 7-positions. Optimized lead compounds in the quinazoline series selectively inhibit KRAS G12C-dependent signaling and cancer cell growth at sub-micromolar concentrations.


Functional Genomics Identify Distinct and Overlapping Genes Mediating Resistance to Different Classes of Heterobifunctional Degraders of Oncoproteins.

  • Ryosuke Shirasaki‎ et al.
  • Cell reports‎
  • 2021‎

Heterobifunctional proteolysis-targeting chimeric compounds leverage the activity of E3 ligases to induce degradation of target oncoproteins and exhibit potent preclinical antitumor activity. To dissect the mechanisms regulating tumor cell sensitivity to different classes of pharmacological "degraders" of oncoproteins, we performed genome-scale CRISPR-Cas9-based gene editing studies. We observed that myeloma cell resistance to degraders of different targets (BET bromodomain proteins, CDK9) and operating through CRBN (degronimids) or VHL is primarily mediated by prevention of, rather than adaptation to, breakdown of the target oncoprotein; and this involves loss of function of the cognate E3 ligase or interactors/regulators of the respective cullin-RING ligase (CRL) complex. The substantial gene-level differences for resistance mechanisms to CRBN- versus VHL-based degraders explains mechanistically the lack of cross-resistance with sequential administration of these two degrader classes. Development of degraders leveraging more diverse E3 ligases/CRLs may facilitate sequential/alternating versus combined uses of these agents toward potentially delaying or preventing resistance.


Mapping the Degradable Kinome Provides a Resource for Expedited Degrader Development.

  • Katherine A Donovan‎ et al.
  • Cell‎
  • 2020‎

Targeted protein degradation (TPD) refers to the use of small molecules to induce ubiquitin-dependent degradation of proteins. TPD is of interest in drug development, as it can address previously inaccessible targets. However, degrader discovery and optimization remains an inefficient process due to a lack of understanding of the relative importance of the key molecular events required to induce target degradation. Here, we use chemo-proteomics to annotate the degradable kinome. Our expansive dataset provides chemical leads for ∼200 kinases and demonstrates that the current practice of starting from the highest potency binder is an ineffective method for discovering active compounds. We develop multitargeted degraders to answer fundamental questions about the ubiquitin proteasome system, uncovering that kinase degradation is p97 dependent. This work will not only fuel kinase degrader discovery, but also provides a blueprint for evaluating targeted degradation across entire gene families to accelerate understanding of TPD beyond the kinome.


INK4 Tumor Suppressor Proteins Mediate Resistance to CDK4/6 Kinase Inhibitors.

  • Qing Li‎ et al.
  • Cancer discovery‎
  • 2022‎

Cyclin-dependent kinases 4 and 6 (CDK4/6) represent a major therapeutic vulnerability for breast cancer. The kinases are clinically targeted via ATP competitive inhibitors (CDK4/6i); however, drug resistance commonly emerges over time. To understand CDK4/6i resistance, we surveyed over 1,300 breast cancers and identified several genetic alterations (e.g., FAT1, PTEN, or ARID1A loss) converging on upregulation of CDK6. Mechanistically, we demonstrate CDK6 causes resistance by inducing and binding CDK inhibitor INK4 proteins (e.g., p18INK4C). In vitro binding and kinase assays together with physical modeling reveal that the p18INK4C-cyclin D-CDK6 complex occludes CDK4/6i binding while only weakly suppressing ATP binding. Suppression of INK4 expression or its binding to CDK6 restores CDK4/6i sensitivity. To overcome this constraint, we developed bifunctional degraders conjugating palbociclib with E3 ligands. Two resulting lead compounds potently degraded CDK4/6, leading to substantial antitumor effects in vivo, demonstrating the promising therapeutic potential for retargeting CDK4/6 despite CDK4/6i resistance. SIGNIFICANCE: CDK4/6 kinase activation represents a common mechanism by which oncogenic signaling induces proliferation and is potentially targetable by ATP competitive inhibitors. We identify a CDK6-INK4 complex that is resilient to current-generation inhibitors and develop a new strategy for more effective inhibition of CDK4/6 kinases.This article is highlighted in the In This Issue feature, p. 275.


Degradation of GSPT1 causes TP53-independent cell death in leukemia while sparing normal hematopoietic stem cells.

  • Rob S Sellar‎ et al.
  • The Journal of clinical investigation‎
  • 2022‎

Targeted protein degradation is a rapidly advancing and expanding therapeutic approach. Drugs that degrade GSPT1 via the CRL4CRBN ubiquitin ligase are a new class of cancer therapy in active clinical development with evidence of activity against acute myeloid leukemia in early-phase trials. However, other than activation of the integrated stress response, the downstream effects of GSPT1 degradation leading to cell death are largely undefined, and no murine models are available to study these agents. We identified the domains of GSPT1 essential for cell survival and show that GSPT1 degradation leads to impaired translation termination, activation of the integrated stress response pathway, and TP53-independent cell death. CRISPR/Cas9 screens implicated decreased translation initiation as protective following GSPT1 degradation, suggesting that cells with higher levels of translation are more susceptible to the effects of GSPT1 degradation. We defined 2 Crbn amino acids that prevent Gspt1 degradation in mice, generated a knockin mouse with alteration of these residues, and demonstrated the efficacy of GSPT1-degrading drugs in vivo with relative sparing of numbers and function of long-term hematopoietic stem cells. Our results provide a mechanistic basis for the use of GSPT1 degraders for the treatment of cancer, including TP53-mutant acute myeloid leukemia.


Temporal resolution of gene derepression and proteome changes upon PROTAC-mediated degradation of BCL11A protein in erythroid cells.

  • Stuti Mehta‎ et al.
  • Cell chemical biology‎
  • 2022‎

Reactivation of fetal hemoglobin expression by the downregulation of BCL11A is a promising treatment for β-hemoglobinopathies. A detailed understanding of BCL11A-mediated repression of γ-globin gene (HBG1/2) transcription is lacking, as studies to date used perturbations by shRNA or CRISPR-Cas9 gene editing. We leveraged the dTAG PROTAC degradation platform to acutely deplete BCL11A protein in erythroid cells and examined consequences by nascent transcriptomics, proteomics, chromatin accessibility, and histone profiling. Among 31 genes repressed by BCL11A, HBG1/2 and HBZ show the most abundant and progressive changes in transcription and chromatin accessibility upon BCL11A loss. Transcriptional changes at HBG1/2 were detected in <2 h. Robust HBG1/2 reactivation upon acute BCL11A depletion occurred without the loss of promoter 5-methylcytosine (5mC). Using targeted protein degradation, we establish a hierarchy of gene reactivation at BCL11A targets, in which nascent transcription is followed by increased chromatin accessibility, and both are uncoupled from promoter DNA methylation at the HBG1/2 loci.


ITK degradation to block T cell receptor signaling and overcome therapeutic resistance in T cell lymphomas.

  • Baishan Jiang‎ et al.
  • Cell chemical biology‎
  • 2023‎

Interleukin (IL)-2-inducible T cell kinase (ITK) is essential for T cell receptor (TCR) signaling and plays an integral role in T cell proliferation and differentiation. Unlike the ITK homolog BTK, no inhibitors of ITK are currently US Food and Drug Administration (FDA) approved. In addition, recent studies have identified mutations within BTK that confer resistance to both covalent and non-covalent inhibitors. Here, as an alternative strategy, we report the development of BSJ-05-037, a potent and selective heterobifunctional degrader of ITK. BSJ-05-037 displayed enhanced anti-proliferative effects relative to its parent inhibitor BMS-509744, blocked the activation of NF-kB/GATA-3 signaling, and increased the sensitivity of T cell lymphoma cells to cytotoxic chemotherapy both in vitro and in vivo. In summary, targeted degradation of ITK is a novel approach to modulate TCR signal strength that could have broad application for the investigation and treatment of T cell-mediated diseases.


UBR5 forms ligand-dependent complexes on chromatin to regulate nuclear hormone receptor stability.

  • Jonathan M Tsai‎ et al.
  • Molecular cell‎
  • 2023‎

Nuclear hormone receptors (NRs) are ligand-binding transcription factors that are widely targeted therapeutically. Agonist binding triggers NR activation and subsequent degradation by unknown ligand-dependent ubiquitin ligase machinery. NR degradation is critical for therapeutic efficacy in malignancies that are driven by retinoic acid and estrogen receptors. Here, we demonstrate the ubiquitin ligase UBR5 drives degradation of multiple agonist-bound NRs, including the retinoic acid receptor alpha (RARA), retinoid x receptor alpha (RXRA), glucocorticoid, estrogen, liver-X, progesterone, and vitamin D receptors. We present the high-resolution cryo-EMstructure of full-length human UBR5 and a negative stain model representing its interaction with RARA/RXRA. Agonist ligands induce sequential, mutually exclusive recruitment of nuclear coactivators (NCOAs) and UBR5 to chromatin to regulate transcriptional networks. Other pharmacological ligands such as selective estrogen receptor degraders (SERDs) degrade their receptors through differential recruitment of UBR5 or RNF111. We establish the UBR5 transcriptional regulatory hub as a common mediator and regulator of NR-induced transcription.


Targeted degradation of aberrant tau in frontotemporal dementia patient-derived neuronal cell models.

  • M Catarina Silva‎ et al.
  • eLife‎
  • 2019‎

Tauopathies are neurodegenerative diseases characterized by aberrant forms of tau protein accumulation leading to neuronal death in focal brain areas. Positron emission tomography (PET) tracers that bind to pathological tau are used in diagnosis, but there are no current therapies to eliminate these tau species. We employed targeted protein degradation technology to convert a tau PET-probe into a functional degrader of pathogenic tau. The hetero-bifunctional molecule QC-01-175 was designed to engage both tau and Cereblon (CRBN), a substrate-receptor for the E3-ubiquitin ligase CRL4CRBN, to trigger tau ubiquitination and proteasomal degradation. QC-01-175 effected clearance of tau in frontotemporal dementia (FTD) patient-derived neuronal cell models, with minimal effect on tau from neurons of healthy controls, indicating specificity for disease-relevant forms. QC-01-175 also rescued stress vulnerability in FTD neurons, phenocopying CRISPR-mediated MAPT-knockout. This work demonstrates that aberrant tau in FTD patient-derived neurons is amenable to targeted degradation, representing an important advance for therapeutics.


Functional regulation of the DNA damage-recognition factor DDB2 by ubiquitination and interaction with xeroderma pigmentosum group C protein.

  • Syota Matsumoto‎ et al.
  • Nucleic acids research‎
  • 2015‎

In mammalian nucleotide excision repair, the DDB1-DDB2 complex recognizes UV-induced DNA photolesions and facilitates recruitment of the XPC complex. Upon binding to damaged DNA, the Cullin 4 ubiquitin ligase associated with DDB1-DDB2 is activated and ubiquitinates DDB2 and XPC. The structurally disordered N-terminal tail of DDB2 contains seven lysines identified as major sites for ubiquitination that target the protein for proteasomal degradation; however, the precise biological functions of these modifications remained unknown. By exogenous expression of mutant DDB2 proteins in normal human fibroblasts, here we show that the N-terminal tail of DDB2 is involved in regulation of cellular responses to UV. By striking contrast with behaviors of exogenous DDB2, the endogenous DDB2 protein was stabilized even after UV irradiation as a function of the XPC expression level. Furthermore, XPC competitively suppressed ubiquitination of DDB2 in vitro, and this effect was significantly promoted by centrin-2, which augments the DNA damage-recognition activity of XPC. Based on these findings, we propose that in cells exposed to UV, DDB2 is protected by XPC from ubiquitination and degradation in a stochastic manner; thus XPC allows DDB2 to initiate multiple rounds of repair events, thereby contributing to the persistence of cellular DNA repair capacity.


Structure of the Human cGAS-DNA Complex Reveals Enhanced Control of Immune Surveillance.

  • Wen Zhou‎ et al.
  • Cell‎
  • 2018‎

Cyclic GMP-AMP synthase (cGAS) recognition of cytosolic DNA is critical for immune responses to pathogen replication, cellular stress, and cancer. Existing structures of the mouse cGAS-DNA complex provide a model for enzyme activation but do not explain why human cGAS exhibits severely reduced levels of cyclic GMP-AMP (cGAMP) synthesis compared to other mammals. Here, we discover that enhanced DNA-length specificity restrains human cGAS activation. Using reconstitution of cGAMP signaling in bacteria, we mapped the determinant of human cGAS regulation to two amino acid substitutions in the DNA-binding surface. Human-specific substitutions are necessary and sufficient to direct preferential detection of long DNA. Crystal structures reveal why removal of human substitutions relaxes DNA-length specificity and explain how human-specific DNA interactions favor cGAS oligomerization. These results define how DNA-sensing in humans adapted for enhanced specificity and provide a model of the active human cGAS-DNA complex to enable structure-guided design of cGAS therapeutics.


Structural complementarity facilitates E7820-mediated degradation of RBM39 by DCAF15.

  • Tyler B Faust‎ et al.
  • Nature chemical biology‎
  • 2020‎

The investigational drugs E7820, indisulam and tasisulam (aryl-sulfonamides) promote the degradation of the splicing factor RBM39 in a proteasome-dependent mechanism. While the activity critically depends on the cullin RING ligase substrate receptor DCAF15, the molecular details remain elusive. Here we present the cryo-EM structure of the DDB1-DCAF15-DDA1 core ligase complex bound to RBM39 and E7820 at a resolution of 4.4 Å, together with crystal structures of engineered subcomplexes. We show that DCAF15 adopts a new fold stabilized by DDA1, and that extensive protein-protein contacts between the ligase and substrate mitigate low affinity interactions between aryl-sulfonamides and DCAF15. Our data demonstrate how aryl-sulfonamides neo-functionalize a shallow, non-conserved pocket on DCAF15 to selectively bind and degrade RBM39 and the closely related splicing factor RBM23 without the requirement for a high-affinity ligand, which has broad implications for the de novo discovery of molecular glue degraders.


Discovery and Optimization of Tau Targeted Protein Degraders Enabled by Patient Induced Pluripotent Stem Cells-Derived Neuronal Models of Tauopathy.

  • M Catarina Silva‎ et al.
  • Frontiers in cellular neuroscience‎
  • 2022‎

Accumulation of misfolded, aggregating proteins concurrent with disease onset and progression is a hallmark of neurodegenerative proteinopathies. An important class of these are tauopathies, such as frontotemporal dementia (FTD) and Alzheimer's disease (AD), associated with accumulation of aberrant forms of tau protein in the brain. Pathological tau undergoes abnormal post-translational modifications, misfolding, oligomerization and changes in solubility, cellular redistribution, and spreading. Development and testing of experimental therapeutics that target these pathological tau conformers requires use of cellular models that recapitulate neuronal endogenous, non-heterologous tau expression under genomic and physiological contexts relevant to disease. In this study, we employed FTD-patient induced pluripotent stem cells (iPSC)-derived neurons, expressing a tau variant or mutation, as primary models for driving a medicinal chemistry campaign around tau targeting degrader series. Our screening goal was to establish structure-activity relationships (SAR) for the different chemical series to identify the molecular composition that most efficiently led to tau degradation in human FTD ex vivo neurons. We describe the identification of the lead compound QC-01-175 and follow-up optimization strategies for this molecule. We present three final lead molecules with tau degradation activity in mutant neurons, which establishes potential disease relevance and will drive future studies on specificity and pharmacological properties.


Exploring Targeted Degradation Strategy for Oncogenic KRASG12C.

  • Mei Zeng‎ et al.
  • Cell chemical biology‎
  • 2020‎

KRAS is the most frequently mutated oncogene found in pancreatic, colorectal, and lung cancers. Although it has been challenging to identify targeted therapies for cancers harboring KRAS mutations, KRASG12C can be targeted by small-molecule inhibitors that form covalent bonds with cysteine 12 (C12). Here, we designed a library of C12-directed covalent degrader molecules (PROTACs) and subjected them to a rigorous evaluation process to rapidly identify a lead compound. Our lead degrader successfully engaged CRBN in cells, bound KRASG12Cin vitro, induced CRBN/KRASG12C dimerization, and degraded GFP-KRASG12C in reporter cells in a CRBN-dependent manner. However, it failed to degrade endogenous KRASG12C in pancreatic and lung cancer cells. Our data suggest that inability of the lead degrader to effectively poly-ubiquitinate endogenous KRASG12C underlies the lack of activity. We discuss challenges for achieving targeted KRASG12C degradation and proposed several possible solutions which may lead to efficient degradation of endogenous KRASG12C.


Acute pharmacological degradation of ERK5 does not inhibit cellular immune response or proliferation.

  • Inchul You‎ et al.
  • Cell chemical biology‎
  • 2022‎

Recent interest in the role that extracellular signal-regulated kinase 5 (ERK5) plays in various diseases, particularly cancer and inflammation, has grown. Phenotypes observed from genetic knockdown or deletion of ERK5 suggested that targeting ERK5 could have therapeutic potential in various disease settings, motivating the development ATP-competitive ERK5 inhibitors. However, these inhibitors were unable to recapitulate the effects of genetic loss of ERK5, suggesting that ERK5 may have key kinase-independent roles. To investigate potential non-catalytic functions of ERK5, we report the development of INY-06-061, a potent and selective heterobifunctional degrader of ERK5. In contrast to results reported through genetic knockdown of ERK5, INY-06-061-induced ERK5 degradation did not induce anti-proliferative effects in multiple cancer cell lines or suppress inflammatory responses in primary endothelial cells. Thus, we developed and characterized a chemical tool useful for validating phenotypes reported to be associated with genetic ERK5 ablation and for guiding future ERK5-directed drug discovery efforts.


Exploring the target scope of KEAP1 E3 ligase-based PROTACs.

  • Guangyan Du‎ et al.
  • Cell chemical biology‎
  • 2022‎

Targeted protein degradation (TPD) uses small molecules to recruit E3 ubiquitin ligases into the proximity of proteins of interest, inducing ubiquitination-dependent degradation. A major bottleneck in the TPD field is the lack of accessible E3 ligase ligands for developing degraders. To expand the E3 ligase toolbox, we sought to convert the Kelch-like ECH-associated protein 1 (KEAP1) inhibitor KI696 into a recruitment handle for several targets. While we were able to generate KEAP1-recruiting degraders of BET family and murine focal adhesion kinase (FAK), we discovered that the target scope of KEAP1 was narrow, as targets easily degraded using a cereblon (CRBN)-recruiting degrader were refractory to KEAP1-mediated degradation. Linking the KEAP1-binding ligand to a CRBN-binding ligand resulted in a molecule that induced degradation of KEAP1 but not CRBN. In sum, we characterize tool compounds to explore KEAP1-mediated ubiquitination and delineate the challenges of exploiting new E3 ligases for generating bivalent degraders.


Design principles for cyclin K molecular glue degraders.

  • Zuzanna Kozicka‎ et al.
  • Nature chemical biology‎
  • 2024‎

Molecular glue degraders are an effective therapeutic modality, but their design principles are not well understood. Recently, several unexpectedly diverse compounds were reported to deplete cyclin K by linking CDK12-cyclin K to the DDB1-CUL4-RBX1 E3 ligase. Here, to investigate how chemically dissimilar small molecules trigger cyclin K degradation, we evaluated 91 candidate degraders in structural, biophysical and cellular studies and reveal all compounds acquire glue activity via simultaneous CDK12 binding and engagement of DDB1 interfacial residues, in particular Arg928. While we identify multiple published kinase inhibitors as cryptic degraders, we also show that these glues do not require pronounced inhibitory properties for activity and that the relative degree of CDK12 inhibition versus cyclin K degradation is tuneable. We further demonstrate cyclin K degraders have transcriptional signatures distinct from CDK12 inhibitors, thereby offering unique therapeutic opportunities. The systematic structure-activity relationship analysis presented herein provides a conceptual framework for rational molecular glue design.


HAPSTR1 localizes HUWE1 to the nucleus to limit stress signaling pathways.

  • Julie K Monda‎ et al.
  • Cell reports‎
  • 2023‎

HUWE1 is a large, enigmatic HECT-domain ubiquitin ligase implicated in the regulation of diverse pathways, including DNA repair, apoptosis, and differentiation. How HUWE1 engages its structurally diverse substrates and how HUWE1 activity is regulated are unknown. Using unbiased quantitative proteomics, we find that HUWE1 targets substrates in a largely cell-type-specific manner. However, we identify C16orf72/HAPSTR1 as a robust HUWE1 substrate in multiple cell lines. Previously established physical and genetic interactions between HUWE1 and HAPSTR1 suggest that HAPSTR1 positively regulates HUWE1 function. Here, we show that HAPSTR1 is required for HUWE1 nuclear localization and nuclear substrate targeting. Nuclear HUWE1 is required for both cell proliferation and modulation of stress signaling pathways, including p53 and nuclear factor κB (NF-κB)-mediated signaling. Combined, our results define a role for HAPSTR1 in gating critical nuclear HUWE1 functions.


The molecular basis of CRL4DDB2/CSA ubiquitin ligase architecture, targeting, and activation.

  • Eric S Fischer‎ et al.
  • Cell‎
  • 2011‎

The DDB1-CUL4-RBX1 (CRL4) ubiquitin ligase family regulates a diverse set of cellular pathways through dedicated substrate receptors (DCAFs). The DCAF DDB2 detects UV-induced pyrimidine dimers in the genome and facilitates nucleotide excision repair. We provide the molecular basis for DDB2 receptor-mediated cyclobutane pyrimidine dimer recognition in chromatin. The structures of the fully assembled DDB1-DDB2-CUL4A/B-RBX1 (CRL4(DDB2)) ligases reveal that the mobility of the ligase arm creates a defined ubiquitination zone around the damage, which precludes direct ligase activation by DNA lesions. Instead, the COP9 signalosome (CSN) mediates the CRL4(DDB2) inhibition in a CSN5 independent, nonenzymatic, fashion. In turn, CSN inhibition is relieved upon DNA damage binding to the DDB2 module within CSN-CRL4(DDB2). The Cockayne syndrome A DCAF complex crystal structure shows that CRL4(DCAF(WD40)) ligases share common architectural features. Our data support a general mechanism of ligase activation, which is induced by CSN displacement from CRL4(DCAF) on substrate binding to the DCAF.


IKAROS and MENIN coordinate therapeutically actionable leukemogenic gene expression in MLL-r acute myeloid leukemia.

  • Brandon J Aubrey‎ et al.
  • Nature cancer‎
  • 2022‎

Acute myeloid leukemia (AML) remains difficult to treat and requires new therapeutic approaches. Potent inhibitors of the chromatin-associated protein MENIN have recently entered human clinical trials, opening new therapeutic opportunities for some genetic subtypes of this disease. Using genome-scale functional genetic screens, we identified IKAROS (encoded by IKZF1) as an essential transcription factor in KMT2A (MLL1)-rearranged (MLL-r) AML that maintains leukemogenic gene expression while also repressing pathways for tumor suppression, immune regulation and cellular differentiation. Furthermore, IKAROS displays an unexpected functional cooperativity and extensive chromatin co-occupancy with mixed lineage leukemia (MLL)1-MENIN and the regulator MEIS1 and an extensive hematopoietic transcriptional complex involving homeobox (HOX)A10, MEIS1 and IKAROS. This dependency could be therapeutically exploited by inducing IKAROS protein degradation with immunomodulatory imide drugs (IMiDs). Finally, we demonstrate that combined IKAROS degradation and MENIN inhibition effectively disrupts leukemogenic transcriptional networks, resulting in synergistic killing of leukemia cells and providing a paradigm for improved drug targeting of transcription and an opportunity for rapid clinical translation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: