Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 47 papers

The p53 tumor suppressor protein protects against chemotherapeutic stress and apoptosis in human medulloblastoma cells.

  • Sarah Waye‎ et al.
  • Aging‎
  • 2015‎

Medulloblastoma (MB), a primitive neuroectodermal tumor, is the most common malignant childhood brain tumor and remains incurable in about a third of patients. Currently, survivors carry a significant burden of late treatment effects. The p53 tumor suppressor protein plays a crucial role in influencing cell survival in response to cellular stress and while the p53 pathway is considered a key determinant of anti-tumor responses in many tumors, its role in cell survival in MB is much less well defined. Herein, we report that the experimental drug VMY-1-103 acts through induction of a partial DNA damage-like response as well induction of non-survival autophagy. Surprisingly, the genetic or chemical silencing of p53 significantly enhanced the cytotoxic effects of both VMY and the DNA damaging drug, doxorubicin. The inhibition of p53 in the presence of VMY revealed increased late stage apoptosis, increased DNA fragmentation and increased expression of genes involved in apoptosis, including CAPN12 and TRPM8, p63, p73, BIK, EndoG, CIDEB, P27Kip1 and P21cip1. These data provide the groundwork for additional studies on VMY as a therapeutic drug and support further investigations into the intriguing possibility that targeting p53 function may be an effective means of enhancing clinical outcomes in MB.


Small 6q16.1 Deletions Encompassing POU3F2 Cause Susceptibility to Obesity and Variable Developmental Delay with Intellectual Disability.

  • Paul R Kasher‎ et al.
  • American journal of human genetics‎
  • 2016‎

Genetic studies of intellectual disability and identification of monogenic causes of obesity in humans have made immense contribution toward the understanding of the brain and control of body mass. The leptin > melanocortin > SIM1 pathway is dysregulated in multiple monogenic human obesity syndromes but its downstream targets are still unknown. In ten individuals from six families, with overlapping 6q16.1 deletions, we describe a disorder of variable developmental delay, intellectual disability, and susceptibility to obesity and hyperphagia. The 6q16.1 deletions segregated with the phenotype in multiplex families and were shown to be de novo in four families, and there was dramatic phenotypic overlap among affected individuals who were independently ascertained without bias from clinical features. Analysis of the deletions revealed a ∼350 kb critical region on chromosome 6q16.1 that encompasses a gene for proneuronal transcription factor POU3F2, which is important for hypothalamic development and function. Using morpholino and mutant zebrafish models, we show that POU3F2 lies downstream of SIM1 and controls oxytocin expression in the hypothalamic neuroendocrine preoptic area. We show that this finding is consistent with the expression patterns of POU3F2 and related genes in the human brain. Our work helps to further delineate the neuro-endocrine control of energy balance/body mass and demonstrates that this molecular pathway is conserved across multiple species.


Electrospun PLLA nanofiber scaffolds and their use in combination with BMP-2 for reconstruction of bone defects.

  • Markus D Schofer‎ et al.
  • PloS one‎
  • 2011‎

Adequate migration and differentiation of mesenchymal stem cells is essential for regeneration of large bone defects. To achieve this, modern graft materials are becoming increasingly important. Among them, electrospun nanofiber scaffolds are a promising approach, because of their high physical porosity and potential to mimic the extracellular matrix (ECM).


Menacalc, a quantitative method of metastasis assessment, as a prognostic marker for axillary node-negative breast cancer.

  • Catherine L Forse‎ et al.
  • BMC cancer‎
  • 2015‎

Menacalc is an immunofluorescence-based, quantitative method in which expression of the non-invasive Mena protein isoform (Mena11a) is subtracted from total Mena protein expression. Previous work has found a significant positive association between Menacalc and risk of death from breast cancer. Our goal was to determine if Menacalc could be used as an independent prognostic marker for axillary node-negative (ANN) breast cancer.


An intrinsically disordered region of the acetyltransferase p300 with similarity to prion-like domains plays a role in aggregation.

  • Alexander Kirilyuk‎ et al.
  • PloS one‎
  • 2012‎

Several human diseases including neurodegenerative disorders and cancer are associated with abnormal accumulation and aggregation of misfolded proteins. Proteins with high tendency to aggregate include the p53 gene product, TAU and alpha synuclein. The potential toxicity of aberrantly folded proteins is limited via their transport into intracellular sub-compartments, the aggresomes, where misfolded proteins are stored or cleared via autophagy. We have identified a region of the acetyltransferase p300 that is highly disordered and displays similarities with prion-like domains. We show that this region is encoded as an alternative spliced variant independently of the acetyltransferase domain, and provides an interaction interface for various misfolded proteins, promoting their aggregation. p300 enhances aggregation of TAU and of p53 and is a component of cellular aggregates in both tissue culture cells and in alpha-synuclein positive Lewy bodies of patients affected by Parkinson disease. Down-regulation of p300 impairs aggresome formation and enhances cytotoxicity induced by misfolded protein stress. These data unravel a novel activity of p300, offer new insights into the function of disordered domains and implicate p300 in pathological aggregation that occurs in neurodegeneration and cancer.


SLC25A1, or CIC, is a novel transcriptional target of mutant p53 and a negative tumor prognostic marker.

  • Vamsi K Kolukula‎ et al.
  • Oncotarget‎
  • 2014‎

Mutations of the p53 gene hallmark many human cancers. Several p53 mutant proteins acquire the capability to promote cancer progression and metastasis, a phenomenon defined as Gain of Oncogenic Function (GOF). The downstream targets by which GOF p53 mutants perturb cellular programs relevant to oncogenesis are only partially known. We have previously demonstrated that SLC25A1 (CIC) promotes tumorigenesis, while its inhibition blunts tumor growth. We now report that CIC is a direct transcriptional target of several p53 mutants. We identify a novel interaction between mutant p53 (mutp53) and the transcription factor FOXO-1 which is responsible for regulation of CIC expression levels. Tumor cells harboring mutp53 display higher CIC levels relative to p53 null or wild-type tumors, and inhibition of CIC activity blunts mutp53-driven tumor growth, partially overcoming GOF activity. CIC inhibition also enhances the chemotherapeutic potential of platinum-based agents. Finally, we found that elevated CIC levels predict poor survival outcome in tumors hallmarked by high frequency of p53 mutations. Our results identify CIC as a novel target of mutp53 and imply that the employment of CIC inhibitors may improve survival rates and reduce chemo-resistance in tumors harboring these types of mutations, which are among the most intractable forms of cancers.


Circadian rhythms in the pineal organ persist in zebrafish larvae that lack ventral brain.

  • Ramil R Noche‎ et al.
  • BMC neuroscience‎
  • 2011‎

The mammalian suprachiasmatic nucleus (SCN), located in the ventral hypothalamus, is a major regulator of circadian rhythms in mammals and birds. However, the role of the SCN in lower vertebrates remains poorly understood. Zebrafish cyclops (cyc) mutants lack ventral brain, including the region that gives rise to the SCN. We have used cyc embryos to define the function of the zebrafish SCN in regulating circadian rhythms in the developing pineal organ. The pineal organ is the major source of the circadian hormone melatonin, which regulates rhythms such as daily rest/activity cycles. Mammalian pineal rhythms are controlled almost exclusively by the SCN. In zebrafish and many other lower vertebrates, the pineal has an endogenous clock that is responsible in part for cyclic melatonin biosynthesis and gene expression.


Distinct p53 acetylation cassettes differentially influence gene-expression patterns and cell fate.

  • Chad D Knights‎ et al.
  • The Journal of cell biology‎
  • 2006‎

The activity of the p53 gene product is regulated by a plethora of posttranslational modifications. An open question is whether such posttranslational changes act redundantly or dependently upon one another. We show that a functional interference between specific acetylated and phosphorylated residues of p53 influences cell fate. Acetylation of lysine 320 (K320) prevents phosphorylation of crucial serines in the NH(2)-terminal region of p53; only allows activation of genes containing high-affinity p53 binding sites, such as p21/WAF; and promotes cell survival after DNA damage. In contrast, acetylation of K373 leads to hyperphosphorylation of p53 NH(2)-terminal residues and enhances the interaction with promoters for which p53 possesses low DNA binding affinity, such as those contained in proapoptotic genes, leading to cell death. Further, acetylation of each of these two lysine clusters differentially regulates the interaction of p53 with coactivators and corepressors and produces distinct gene-expression profiles. By analogy with the "histone code" hypothesis, we propose that the multiple biological activities of p53 are orchestrated and deciphered by different "p53 cassettes," each containing combination patterns of posttranslational modifications and protein-protein interactions.


Functional mimicry of the acetylated C-terminal tail of p53 by a SUMO-1 acetylated domain, SAD.

  • Amrita Cheema‎ et al.
  • Journal of cellular physiology‎
  • 2010‎

The ubiquitin-like molecule, SUMO-1, a small protein essential for a variety of biological processes, is covalently conjugated to many intracellular proteins, especially to regulatory components of the transcriptional machinery, such as histones and transcription factors. Sumoylation provides either a stimulatory or an inhibitory signal for proliferation and for transcription, but the molecular mechanisms by which SUMO-1 achieves such versatility of effects are incompletely defined. The tumor suppressor and transcription regulator p53 is a relevant SUMO-1 target. Particularly, the C-terminal tail of p53 undergoes both sumoylation and acetylation. While the effects of sumoylation are still controversial, acetylation modifies p53 interaction with chromatin embedded promoters, and enforces p53 apoptotic activity. In this study, we show that the N-terminal region of SUMO-1 might functionally mimic this activity of the p53 C-terminal tail. We found that this SUMO-1 domain possesses similarity with the C-terminal acetylable p53 tail as well as with acetylable domains of other transcription factors. SUMO-1 is, indeed, acetylated when conjugated to its substrates and to p53. In the acetylable form SUMO-1 tunes the p53 response by modifying p53 transcriptional program, by promoting binding onto selected promoters and by favoring apoptosis. By contrast, when non-acetylable, SUMO-1 enforces cell-cycle arrest and p53 binding to a different sets of genes. These data demonstrate for the first time that SUMO-1, a post-translational modification is, in turn, modified by acetylation. Further, they imply that the pleiotropy of effects by which SUMO-1 influences various cellular outcomes and the activity of p53 depends upon its acetylation state.


YAP/TAZ Inhibition Induces Metabolic and Signaling Rewiring Resulting in Targetable Vulnerabilities in NF2-Deficient Tumor Cells.

  • Shannon M White‎ et al.
  • Developmental cell‎
  • 2019‎

Merlin/NF2 is a bona fide tumor suppressor whose mutations underlie inherited tumor syndrome neurofibromatosis type 2 (NF2), as well as various sporadic cancers including kidney cancer. Multiple Merlin/NF2 effector pathways including the Hippo-YAP/TAZ pathway have been identified. However, the molecular mechanisms underpinning the growth and survival of NF2-mutant tumors remain poorly understood. Using an inducible orthotopic kidney tumor model, we demonstrate that YAP/TAZ silencing is sufficient to induce regression of pre-established NF2-deficient tumors. Mechanistically, YAP/TAZ depletion diminishes glycolysis-dependent growth and increases mitochondrial respiration and reactive oxygen species (ROS) buildup, resulting in oxidative-stress-induced cell death when challenged by nutrient stress. Furthermore, we identify lysosome-mediated cAMP-PKA/EPAC-dependent activation of RAF-MEK-ERK signaling as a resistance mechanism to YAP/TAZ inhibition. Finally, unbiased analysis of TCGA primary kidney tumor transcriptomes confirms a positive correlation of a YAP/TAZ signature with glycolysis and inverse correlations with oxidative phosphorylation and lysosomal gene expression, supporting the clinical relevance of our findings.


CRISPR-Cas9 Knockdown and Induced Expression of CD133 Reveal Essential Roles in Melanoma Invasion and Metastasis.

  • Cynthia M Simbulan-Rosenthal‎ et al.
  • Cancers‎
  • 2019‎

CD133, known as prominin1, is a penta-span transmembrane glycoprotein presumably a cancer stem cell marker for carcinomas, glioblastomas, and melanomas. We showed that CD133(+) 'melanoma-initiating cells' are associated with chemoresistance, contributing to poor patient outcome. The current study investigates the role(s) of CD133 in invasion and metastasis. Magnetic-activated cell sorting of a melanoma cell line (BAKP) followed by transwell invasion assays revealed that CD133(+) cells are significantly more invasive than CD133(-) cells. Conditional reprogramming of BAKP CD133(+) cells maintained stable CD133 overexpression (BAK-R), and induced cancer stem cell markers, melanosphere formation, and chemoresistance to kinase inhibitors. BAK-R cells showed upregulated CD133 expression, and consequently were more invasive and metastatic than BAK-P cells in transwell and zebrafish assays. CD133 knockdown by siRNA or CRISPR-Cas9 (BAK-R-T3) in BAK-R cells reduced invasion and levels of matrix metalloproteinases MMP2/MMP9. BAK-R-SC cells, but not BAK-R-T3, were metastatic in zebrafish. While CD133 knockdown by siRNA or CRISPR-Cas9 in BAK-P cells attenuated invasion and diminished MMP2/MMP9 levels, doxycycline-induced CD133 expression in BAK-P cells enhanced invasion and MMP2/MMP9 concentrations. CD133 may therefore play an essential role in invasion and metastasis via upregulation of MMP2/MMP9, leading to tumor progression, and represents an attractive target for intervention in melanoma.


Inhibiting BRAF/EGFR/MEK suppresses cancer stemness and drug resistance of primary colorectal cancer cells.

  • Astha Lamichhane‎ et al.
  • Oncotarget‎
  • 2023‎

Drug resistance is a major barrier against successful treatments of cancer patients. Gain of stemness under drug pressure is a major mechanism that renders treatments ineffective. Identifying approaches to target cancer stem cells (CSCs) is expected to improve treatment outcomes for patients. To elucidate the role of cancer stemness in resistance of colorectal cancer cells to targeted therapies, we developed spheroid cultures of patient-derived BRAFmut and KRASmut tumor cells and studied resistance mechanisms to inhibition of MAPK pathway through phenotypic and gene and protein expression analysis. We found that treatments enriched the expression of CSC markers CD166, ALDH1A3, CD133, and LGR5 and activated PI3K/Akt pathway in cancer cells. We examined various combination treatments to block these activities and found that a triple combination against BRAF, EGFR, and MEK significantly reduced stemness and activities of oncogenic signaling pathways. This study demonstrates the feasibility of blocking stemness-mediated drug resistance and tumorigenic activities in colorectal cancer.


Extremely low thermal conductivity and high electrical conductivity of sustainable carbon-ceramic electrospun nonwoven materials.

  • Xiaojian Liao‎ et al.
  • Science advances‎
  • 2023‎

Materials with an extremely low thermal and high electrical conductivity that are easy to process, foldable, and nonflammable are required for sustainable applications, notably in energy converters, miniaturized electronics, and high-temperature fuel cells. Given the inherent correlation between high thermal and high electrical conductivity, innovative design concepts that decouple phonon and electron transport are necessary. We achieved this unique combination of thermal conductivity 19.8 ± 7.8 mW/m/K (cross-plane) and 31.8 ± 11.8 mW/m/K (in-plane); electrical conductivity 4.2 S/cm in-plane in electrospun nonwovens comprising carbon as the matrix and silicon-based ceramics as nano-sized inclusions with a sea-island nanostructure. The carbon phase modulates electronic transport for high electrical conductivity, and the ceramic phase induces phonon scattering for low thermal conductivity by excessive boundary scattering. Our strategy can be used to fabricate the unique nonwoven materials for real-world applications and will inspire the design of materials made from carbon and ceramic.


Functional genomics analyses of RNA-binding proteins reveal the splicing regulator SNRPB as an oncogenic candidate in glioblastoma.

  • Bruna R Correa‎ et al.
  • Genome biology‎
  • 2016‎

Glioblastoma (GBM) is the most common and aggressive type of brain tumor. Currently, GBM has an extremely poor outcome and there is no effective treatment. In this context, genomic and transcriptomic analyses have become important tools to identify new avenues for therapies. RNA-binding proteins (RBPs) are master regulators of co- and post-transcriptional events; however, their role in GBM remains poorly understood. To further our knowledge of novel regulatory pathways that could contribute to gliomagenesis, we have conducted a systematic study of RBPs in GBM.


HPV positive neuroendocrine cervical cancer cells are dependent on Myc but not E6/E7 viral oncogenes.

  • Hang Yuan‎ et al.
  • Scientific reports‎
  • 2017‎

Using conditional cell reprogramming, we generated a stable cell culture of an extremely rare and aggressive neuroendocrine cervical cancer. The cultured cells contained HPV-16, formed colonies in soft agar and rapidly produced tumors in immunodeficient mice. The HPV-16 genome was integrated adjacent to the Myc gene, both of which were amplified 40-fold. Analysis of RNA transcripts detected fusion of the HPV/Myc genes, arising from apparent microhomologous recombination. Spectral karyotyping (SKY) and fluorescent-in-situ hybridization (FISH) demonstrated coordinate localization and translocation of the amplified Myc and HPV genes on chromosomes 8 and 21. Similar to the primary tumor, tumor cell cultures expressed very high levels of the Myc protein and, in contrast to all other HPV-positive cervical cancer cell lines, they harbored a gain-of-function mutation in p53 (R273C). Unexpectedly, viral oncogene knockdown had no effect on the growth of the cells, but it did inhibit the proliferation of a conventional HPV-16 positive cervical cancer cell line. Knockdown of Myc, but not the mutant p53, significantly inhibited tumor cell proliferation. On the basis of these data, we propose that the primary driver of transformation in this aggressive cervical cancer is not HPV oncogene expression but rather the overexpression of Myc.


Patient-derived conditionally reprogrammed cells maintain intra-tumor genetic heterogeneity.

  • Bruna R S Correa‎ et al.
  • Scientific reports‎
  • 2018‎

Preclinical in vitro models provide an essential tool to study cancer cell biology as well as aid in translational research, including drug target identification and drug discovery efforts. For any model to be clinically relevant, it needs to recapitulate the biology and cell heterogeneity of the primary tumor. We recently developed and described a conditional reprogramming (CR) cell technology that addresses many of these needs and avoids the deficiencies of most current cancer cell lines, which are usually clonal in origin. Here, we used the CR cell method to generate a collection of patient-derived cell cultures from non-small cell lung cancers (NSCLC). Whole exome sequencing and copy number variations are used for the first time to address the capability of CR cells to keep their tumor-derived heterogeneity. Our results indicated that these primary cultures largely maintained the molecular characteristics of the original tumors. Using a mutant-allele tumor heterogeneity (MATH) score, we showed that CR cells are able to keep and maintain most of the intra-tumoral heterogeneity, suggesting oligoclonality of these cultures. CR cultures therefore represent a pre-clinical lung cancer model for future basic and translational studies.


An acetylation switch regulates SUMO-dependent protein interaction networks.

  • Rebecca Ullmann‎ et al.
  • Molecular cell‎
  • 2012‎

The attachment of the SUMO modifier to proteins controls cellular signaling pathways through noncovalent binding to SUMO-interaction motifs (SIMs). Canonical SIMs contain a core of hydrophobic residues that bind to a hydrophobic pocket on SUMO. Negatively charged residues of SIMs frequently contribute to binding by interacting with a basic surface on SUMO. Here we define acetylation within this basic interface as a central mechanism for the control of SUMO-mediated interactions. The acetyl-mediated neutralization of basic charges on SUMO prevents binding to SIMs in PML, Daxx, and PIAS family members but does not affect the interaction between RanBP2 and SUMO. Acetylation is controlled by HDACs and attenuates SUMO- and PIAS-mediated gene silencing. Moreover, it affects the assembly of PML nuclear bodies and restrains the recruitment of the corepressor Daxx to these structures. This acetyl-dependent switch thus expands the regulatory repertoire of SUMO signaling and determines the selectivity and dynamics of SUMO-SIM interactions.


Functionalisation of PLLA nanofiber scaffolds using a possible cooperative effect between collagen type I and BMP-2: impact on colonization and bone formation in vivo.

  • Markus D Schofer‎ et al.
  • Journal of materials science. Materials in medicine‎
  • 2012‎

The reconstruction of large bone defects after injury or tumor resection often requires the use of bone substitution. Artificial scaffolds based on synthetic biomaterials can overcome disadvantages of autologous bone grafts, like limited availability and donor side morbidity. Among them, scaffolds based on nanofibers offer great advantages. They mimic the extracellular matrix, can be used as a carrier for growth factors and allow the differentiation of human mesenchymal stem cells. Differentiation is triggered by a series of signaling processes, including integrin and bone morphogenetic protein (BMP), which act in a cooperative manner. The aim of this study was to analyze whether these processes can be remodeled in artificial poly-(l)-lactide acid (PLLA) based nanofiber scaffolds in vivo. Electrospun matrices composed of PLLA-collagen type I or BMP-2 incorporated PLLA-collagen type I were implanted in calvarial critical size defects in rats. Cranial CT-scans were taken 4, 8 and 12 weeks after implantation. Specimens obtained after euthanasia were processed for histology and immunostainings on osteocalcin, BMP-2 and Smad5. After implantation the scaffolds were inhomogeneously colonized and cells were only present in wrinkle- or channel-like structures. Ossification was detected only in focal areas of the scaffold. This was independent of whether BMP-2 was incorporated in the scaffold. However, cells that migrated into the scaffold showed an increased ratio of osteocalcin and Smad5 positive cells compared to empty defects. Furthermore, in case of BMP-2 incorporated PLLA-collagen type I scaffolds, 4 weeks after implantation approximately 40 % of the cells stained positive for BMP-2 indicating an autocrine process of the ingrown cells. These findings indicate that a cooperative effect between BMP-2 and collagen type I can be transferred to PLLA nanofibers and furthermore, that this effect is active in vivo. However, this had no effect on bone formation. The reason for this seems to be an unbalanced colonization of the scaffolds with cells, due to insufficient pore size.


Phytochemicals inhibit migration of triple negative breast cancer cells by targeting kinase signaling.

  • Pradip Shahi Thakuri‎ et al.
  • BMC cancer‎
  • 2020‎

Cell migration and invasion are essential processes for metastatic dissemination of cancer cells. Significant progress has been made in developing new therapies against oncogenic signaling to eliminate cancer cells and shrink tumors. However, inherent heterogeneity and treatment-induced adaptation to drugs commonly enable subsets of cancer cells to survive therapy. In addition to local recurrence, these cells escape a primary tumor and migrate through the stroma to access the circulation and metastasize to different organs, leading to an incurable disease. As such, therapeutics that block migration and invasion of cancer cells may inhibit or reduce metastasis and significantly improve cancer therapy. This is particularly more important for cancers, such as triple negative breast cancer, that currently lack targeted drugs.


Comparison of tumor growth assessment using GFP fluorescence and DiI labeling in a zebrafish xenograft model.

  • Yaal Dryer‎ et al.
  • Cancer biology & therapy‎
  • 2023‎

DiI is a lipophilic fluorescent dye frequently used to label and trace cells in cell cultures and xenograft models. However, DiI can also transfer from labeled to unlabeled cells, including host organism cells, and label dead cells obscuring interpretation of the results. These limitations of DiI labeling in xenograft models have not been thoroughly investigated. Here we labeled green fluorescent protein (GFP)-expressing MDA-MB-231 cells with DiI to directly compare tumor growth assessment in zebrafish xenografts using the DiI labeling and GFP fluorescence. Our results indicate that the DiI based assessment significantly overestimated tumor growth in zebrafish xenograft models compared to the GFP fluorescence based assessment. The imaging of DiI labeled GFP-expressing MDA-MB-231 cell cultures indicated that the DiI labeling of the membrane is uneven. Analysis of the DiI labeled GFP-expressing MDA-MB-231 cell cultures with flow cytometry indicated that the DiI labeling varied over time while the GFP fluorescence remained unchanged, suggesting that the GFP fluorescence is a more reliable signal for monitoring tumor progression than the DiI labeling. Taken together, our results demonstrate limitations of using DiI labeling for xenograft models and emphasize the need for validating the results based on DiI labeling with other orthogonal methods, such as the ones utilizing genetically encoded fluorophores.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: