Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 22 papers

The cognitive profile of prion disease: a prospective clinical and imaging study.

  • Diana Caine‎ et al.
  • Annals of clinical and translational neurology‎
  • 2015‎

Prion diseases are dementing illnesses with poorly defined neuropsychological features. This is probably because the most common form, sporadic Creutzfeldt-Jakob disease, is often rapidly progressive with pervasive cognitive decline making detailed neuropsychological investigation difficult. This study, which includes patients with inherited, acquired (iatrogenic and variant) and sporadic forms of the disease, is the only large-scale neuropsychological investigation of this patient group ever undertaken and aimed to define a neuropsychological profile of human prion diseases.


Cerebrospinal fluid neurogranin and TREM2 in Huntington's disease.

  • Lauren M Byrne‎ et al.
  • Scientific reports‎
  • 2018‎

Biomarkers of Huntington's disease (HD) in cerebrospinal fluid (CSF) could be of value in elucidating the biology of this genetic neurodegenerative disease, as well as in the development of novel therapeutics. Deranged synaptic and immune function have been reported in HD, and concentrations of the synaptic protein neurogranin and the microglial protein TREM2 are increased in other neurodegenerative diseases. We therefore used ELISAs to quantify neurogranin and TREM2 in CSF samples from HD mutation carriers and controls. CSF neurogranin concentration was not significantly altered in HD compared to controls, nor was it significantly associated with disease burden score, total functional capacity or motor score. An apparent increase in CSF TREM2 in manifest HD was determined to be due to increasing TREM2 with age. After age adjustment, there was no significant alteration of TREM2 in either HD group, nor any association with motor, functional or cognitive score, or brain volume quantified by MRI. Both analyses were well-powered, and sample size calculations indicated that several thousand samples per group would be needed to prove that disease-associated alterations do in fact exist. We conclude that neither neurogranin nor TREM2 is a useful biofluid biomarker for disease processes in Huntington's disease.


Simultaneous quantification of GABA, Glx and GSH in the neonatal human brain using magnetic resonance spectroscopy.

  • Yanez Lopez Maria‎ et al.
  • NeuroImage‎
  • 2021‎

Balance between inhibitory and excitatory neurotransmitter systems and the protective role of the major antioxidant glutathione (GSH) are central to early healthy brain development. Disruption has been implicated in the early life pathophysiology of psychiatric disorders and neurodevelopmental conditions including Autism Spectrum Disorder. Edited magnetic resonance spectroscopy (MRS) methods such as HERMES have great potential for providing important new non-invasive insights into these crucial processes in human infancy. In this work, we describe a systematic approach to minimise the impact of specific technical challenges inherent to acquiring MRS data in a neonatal population, including automatic segmentation, full tissue-correction and optimised GABA+ fitting and consider the minimum requirements for a robust edited-MRS acquisition. With this approach we report for the first time simultaneous GABA+, Glx (glutamate + glutamine) and GSH concentrations in the neonatal brain (n = 18) in two distinct regions (thalamus and anterior cingulate cortex (ACC)) using edited MRS at 3T. The improved sensitivity provided by our method allows specific regional neurochemical differences to be identified including: significantly lower Glx and GSH ratios to total creatine in the thalamus compared to the ACC (p < 0.001 for both), and significantly higher GSH levels in the ACC following tissue-correction (p < 0.01). Furthermore, in contrast to adult GABA+ which can typically be accurately fitted with a single peak, all neonate spectra displayed a characteristic doublet GABA+ peak at 3 ppm, indicating a lower macromolecule (MM) contribution to the 3 ppm signal in neonates. Relatively high group-level variance shows the need to maximise voxel size/acquisition time in edited neonatal MRS acquisitions for robust estimation of metabolites. Application of this method to study how these levels and balance are altered by early-life brain injury or genetic risk can provide important new knowledge about the pathophysiology underlying neurodevelopmental disorders.


ExploreASL: An image processing pipeline for multi-center ASL perfusion MRI studies.

  • Henk J M M Mutsaerts‎ et al.
  • NeuroImage‎
  • 2020‎

Arterial spin labeling (ASL) has undergone significant development since its inception, with a focus on improving standardization and reproducibility of its acquisition and quantification. In a community-wide effort towards robust and reproducible clinical ASL image processing, we developed the software package ExploreASL, allowing standardized analyses across centers and scanners. The procedures used in ExploreASL capitalize on published image processing advancements and address the challenges of multi-center datasets with scanner-specific processing and artifact reduction to limit patient exclusion. ExploreASL is self-contained, written in MATLAB and based on Statistical Parameter Mapping (SPM) and runs on multiple operating systems. To facilitate collaboration and data-exchange, the toolbox follows several standards and recommendations for data structure, provenance, and best analysis practice. ExploreASL was iteratively refined and tested in the analysis of >10,000 ASL scans using different pulse-sequences in a variety of clinical populations, resulting in four processing modules: Import, Structural, ASL, and Population that perform tasks, respectively, for data curation, structural and ASL image processing and quality control, and finally preparing the results for statistical analyses on both single-subject and group level. We illustrate ExploreASL processing results from three cohorts: perinatally HIV-infected children, healthy adults, and elderly at risk for neurodegenerative disease. We show the reproducibility for each cohort when processed at different centers with different operating systems and MATLAB versions, and its effects on the quantification of gray matter cerebral blood flow. ExploreASL facilitates the standardization of image processing and quality control, allowing the pooling of cohorts which may increase statistical power and discover between-group perfusion differences. Ultimately, this workflow may advance ASL for wider adoption in clinical studies, trials, and practice.


Cerebrospinal fluid flow dynamics in Huntington's disease evaluated by phase contrast MRI.

  • Filipe B Rodrigues‎ et al.
  • The European journal of neuroscience‎
  • 2019‎

Multiple targeted therapeutics for Huntington's disease are now in clinical trials, including intrathecally delivered compounds. Previous research suggests that CSF dynamics may be altered in Huntington's disease, which could be of paramount relevance to intrathecal drug delivery to the brain. To test this hypothesis, we conducted a prospective cross-sectional study comparing people with early stage Huntington's disease with age- and gender-matched healthy controls. CSF peak velocity, mean velocity and mean flow at the level of the cerebral aqueduct, and sub-arachnoid space in the upper and lower spine, were quantified using phase contrast MRI. We calculated Spearman's rank correlations, and tested inter-group differences with Wilcoxon rank-sum test. Ten people with early Huntington's disease, and 10 controls were included. None of the quantified measures was associated with potential modifiers of CSF dynamics (demographics, osmolality, and brain volumes), or by known modifiers of Huntington's disease (age and HTTCAG repeat length); and no significant differences were found between the two studied groups. While external validation is required, the attained results are sufficient to conclude tentatively that a clinically relevant alteration of CSF dynamics - that is, one that would justify dose-adjustments of intrathecal drugs - is unlikely to exist in Huntington's disease.


Arterial Spin Labeling Reveals Disrupted Brain Networks and Functional Connectivity in Drug-Resistant Temporal Epilepsy.

  • Ilaria Boscolo Galazzo‎ et al.
  • Frontiers in neuroinformatics‎
  • 2018‎

Resting-state networks (RSNs) and functional connectivity (FC) have been increasingly exploited for mapping brain activity and identifying abnormalities in pathologies, including epilepsy. The majority of studies currently available are based on blood-oxygenation-level-dependent (BOLD) contrast in combination with either independent component analysis (ICA) or pairwise region of interest (ROI) correlations. Despite its success, this approach has several shortcomings as BOLD is only an indirect and non-quantitative measure of brain activity. Conversely, promising results have recently been achieved by arterial spin labeling (ASL) MRI, primarily developed to quantify brain perfusion. However, the wide application of ASL-based FC has been hampered by its complexity and relatively low robustness to noise, leaving several aspects of this approach still largely unexplored. In this study, we firstly aimed at evaluating the effect of noise reduction on spatio-temporal ASL analyses and quantifying the impact of two ad-hoc processing pipelines (basic and advanced) on connectivity measures. Once the optimal strategy had been defined, we investigated the applicability of ASL for connectivity mapping in patients with drug-resistant temporal epilepsy vs. controls (10 per group), aiming at revealing between-group voxel-wise differences in each RSN and ROI-wise FC changes. We first found ASL was able to identify the main network (DMN) along with all the others generally detected with BOLD but never previously reported from ASL. For all RSNs, ICA-based denoising (advanced pipeline) allowed to increase their similarity with the corresponding BOLD template. ASL-based RSNs were visibly consistent with literature findings; however, group differences could be identified in the structure of some networks. Indeed, statistics revealed areas of significant FC decrease in patients within different RSNs, such as DMN and cerebellum (CER), while significant increases were found in some cases, such as the visual networks. Finally, the ROI-based analyses identified several inter-hemispheric dysfunctional links (controls > patients) mainly between areas belonging to the DMN, right-left thalamus and right-left temporal lobe. Conversely, fewer connections, predominantly intra-hemispheric, showed the opposite pattern (controls < patients). All these elements provide novel insights into the pathological modulations characterizing a "network disease" as epilepsy, shading light on the importance of perfusion-based approaches for identifying the disrupted areas and communications between brain regions.


Study protocol: Insight 46 - a neuroscience sub-study of the MRC National Survey of Health and Development.

  • Christopher A Lane‎ et al.
  • BMC neurology‎
  • 2017‎

Increasing age is the biggest risk factor for dementia, of which Alzheimer's disease is the commonest cause. The pathological changes underpinning Alzheimer's disease are thought to develop at least a decade prior to the onset of symptoms. Molecular positron emission tomography and multi-modal magnetic resonance imaging allow key pathological processes underpinning cognitive impairment - including β-amyloid depostion, vascular disease, network breakdown and atrophy - to be assessed repeatedly and non-invasively. This enables potential determinants of dementia to be delineated earlier, and therefore opens a pre-symptomatic window where intervention may prevent the onset of cognitive symptoms.


CEST MRI provides amide/amine surrogate biomarkers for treatment-naïve glioma sub-typing.

  • Laura Mancini‎ et al.
  • European journal of nuclear medicine and molecular imaging‎
  • 2022‎

Accurate glioma classification affects patient management and is challenging on non- or low-enhancing gliomas. This study investigated the clinical value of different chemical exchange saturation transfer (CEST) metrics for glioma classification and assessed the diagnostic effect of the presence of abundant fluid in glioma subpopulations.


Uncertainty analysis of MR-PET image registration for precision neuro-PET imaging.

  • Pawel J Markiewicz‎ et al.
  • NeuroImage‎
  • 2021‎

Accurate regional brain quantitative PET measurements, particularly when using partial volume correction, rely on robust image registration between PET and MR images. We argue here that the precision, and hence the uncertainty, of MR-PET image registration is mainly driven by the registration implementation and the quality of PET images due to their lower resolution and higher noise compared to the structural MR images. We propose a dedicated uncertainty analysis for quantifying the precision of MR-PET registration, centred around the bootstrap resampling of PET list-mode events to generate multiple PET image realisations with different noise (count) levels. The effects of PET image reconstruction parameters, such as the use of attenuation and scatter corrections and different number of iterations, on the precision and accuracy of MR-PET registration were investigated. In addition, the performance of four software packages with their default settings for rigid inter-modality image registration were considered: NiftyReg, Vinci, FSL and SPM. Four distinct PET image distributions made of two early time frames (similar to cortical FDG) and two late frames using two amyloid PET dynamic acquisitions of one amyloid positive and one amyloid negative participants were investigated. For the investigated four PET frames, the biggest impact on the uncertainty was observed between registration software packages (up to 10-fold difference in precision) followed by the reconstruction parameters. On average, the lowest uncertainty for different PET frames and brain regions was observed with SPM and two iterations of fully quantitative image reconstruction. The observed uncertainty for the varying PET count-level (from 5% to 60%) was slightly lower than for the reconstruction parameters. We also observed that the registration uncertainty in quantitative PET analysis depends on amyloid status of the considered PET frames, with increased uncertainty (up to three times) when using post-reconstruction partial volume correction. This analysis is applicable for PET data obtained from either PET/MR or PET/CT scanners.


Reduced acquisition time PET pharmacokinetic modelling using simultaneous ASL-MRI: proof of concept.

  • Catherine J Scott‎ et al.
  • Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism‎
  • 2019‎

Pharmacokinetic modelling on dynamic positron emission tomography (PET) data is a quantitative technique. However, the long acquisition time is prohibitive for routine clinical use. Instead, the semi-quantitative standardised uptake value ratio (SUVR) from a shorter static acquisition is used, despite its sensitivity to blood flow confounding longitudinal analysis. A method has been proposed to reduce the dynamic acquisition time for quantification by incorporating cerebral blood flow (CBF) information from arterial spin labelling (ASL) magnetic resonance imaging (MRI) into the pharmacokinetic modelling. In this work, we optimise and validate this framework for a study of ageing and preclinical Alzheimer's disease. This methodology adapts the simplified reference tissue model (SRTM) for a reduced acquisition time (RT-SRTM) and is applied to [18F]-florbetapir PET data for amyloid-β quantification. Evaluation shows that the optimised RT-SRTM can achieve amyloid burden estimation from a 30-min PET/MR acquisition which is comparable with the gold standard SRTM applied to 60 min of PET data. Conversely, SUVR showed a significantly higher error and bias, and a statistically significant correlation with tracer delivery due to the influence of blood flow. The optimised RT-SRTM produced amyloid burden estimates which were uncorrelated with tracer delivery indicating its suitability for longitudinal studies.


Connectivity derived thalamic segmentation in deep brain stimulation for tremor.

  • Harith Akram‎ et al.
  • NeuroImage. Clinical‎
  • 2018‎

The ventral intermediate nucleus (VIM) of the thalamus is an established surgical target for stereotactic ablation and deep brain stimulation (DBS) in the treatment of tremor in Parkinson's disease (PD) and essential tremor (ET). It is centrally placed on a cerebello-thalamo-cortical network connecting the primary motor cortex, to the dentate nucleus of the contralateral cerebellum through the dentato-rubro-thalamic tract (DRT). The VIM is not readily visible on conventional MR imaging, so identifying the surgical target traditionally involved indirect targeting that relies on atlas-defined coordinates. Unfortunately, this approach does not fully account for individual variability and requires surgery to be performed with the patient awake to allow for intraoperative targeting confirmation. The aim of this study is to identify the VIM and the DRT using probabilistic tractography in patients that will undergo thalamic DBS for tremor. Four male patients with tremor dominant PD and five patients (three female) with ET underwent high angular resolution diffusion imaging (HARDI) (128 diffusion directions, 1.5 mm isotropic voxels and b value = 1500) preoperatively. Patients received VIM-DBS using an MR image guided and MR image verified approach with indirect targeting. Postoperatively, using parallel Graphical Processing Unit (GPU) processing, thalamic areas with the highest diffusion connectivity to the primary motor area (M1), supplementary motor area (SMA), primary sensory area (S1) and contralateral dentate nucleus were identified. Additionally, volume of tissue activation (VTA) corresponding to active DBS contacts were modelled. Response to treatment was defined as 40% reduction in the total Fahn-Tolosa-Martin Tremor Rating Score (FTMTRS) with DBS-ON, one year from surgery. Three out of nine patients had a suboptimal, long-term response to treatment. The segmented thalamic areas corresponded well to anatomically known counterparts in the ventrolateral (VL) and ventroposterior (VP) thalamus. The dentate-thalamic area, lay within the M1-thalamic area in a ventral and lateral location. Streamlines corresponding to the DRT connected M1 to the contralateral dentate nucleus via the dentate-thalamic area, clearly crossing the midline in the mesencephalon. Good response was seen when the active contact VTA was in the thalamic area with highest connectivity to the contralateral dentate nucleus. Non-responders had active contact VTAs outside the dentate-thalamic area. We conclude that probabilistic tractography techniques can be used to segment the VL and VP thalamus based on cortical and cerebellar connectivity. The thalamic area, best representing the VIM, is connected to the contralateral dentate cerebellar nucleus. Connectivity based segmentation of the VIM can be achieved in individual patients in a clinically feasible timescale, using HARDI and high performance computing with parallel GPU processing. This same technique can map out the DRT tract with clear mesencephalic crossing.


Characterizing White Matter in Huntington's Disease.

  • Sarah Gregory‎ et al.
  • Movement disorders clinical practice‎
  • 2020‎

Investigating early white matter (WM) change in Huntington's disease (HD) can improve our understanding of the way in which disease spreads from the striatum.


Putaminal diffusion tensor imaging measures predict disease severity across human prion diseases.

  • Harpreet Hyare‎ et al.
  • Brain communications‎
  • 2020‎

Therapeutic trials of disease-modifying agents in neurodegenerative disease typically require several hundred participants and long durations for clinical endpoints. Trials of this size are not feasible for prion diseases, rare dementia disorders associated with misfolding of prion protein. In this situation, biomarkers are particularly helpful. On diagnostic imaging, prion diseases demonstrate characteristic brain signal abnormalities on diffusion-weighted MRI. The aim of this study was to determine whether cerebral water diffusivity could be a quantitative imaging biomarker of disease severity. We hypothesized that the basal ganglia were most likely to demonstrate functionally relevant changes in diffusivity. Seventy-one subjects (37 patients and 34 controls) of whom 47 underwent serial scanning (23 patients and 24 controls) were recruited as part of the UK National Prion Monitoring Cohort. All patients underwent neurological assessment with the Medical Research Council Scale, a functionally orientated measure of prion disease severity, and diffusion tensor imaging. Voxel-based morphometry, voxel-based analysis of diffusion tensor imaging and regions of interest analyses were performed. A significant voxel-wise correlation of decreased Medical Research Council Scale score and decreased mean, radial and axial diffusivities in the putamen bilaterally was observed (P < 0.01). Significant decrease in putamen mean, radial and axial diffusivities over time was observed for patients compared with controls (P = 0.01), and there was a significant correlation between monthly decrease in putamen mean, radial and axial diffusivities and monthly decrease in Medical Research Council Scale (P < 0.001). Step-wise linear regression analysis, with dependent variable decline in Medical Research Council Scale, and covariates age and disease duration, showed the rate of decrease in putamen radial diffusivity to be the strongest predictor of rate of decrease in Medical Research Council Scale (P < 0.001). Sample size calculations estimated that, for an intervention study, 83 randomized patients would be required to provide 80% power to detect a 75% amelioration of decline in putamen radial diffusivity. Putamen radial diffusivity has potential as a secondary outcome measure biomarker in future therapeutic trials in human prion diseases.


Implementation of clinically relevant and robust fMRI-based language lateralization: Choosing the laterality index calculation method.

  • Irène Brumer‎ et al.
  • PloS one‎
  • 2020‎

The assessment of language lateralization has become widely used when planning neurosurgery close to language areas, due to individual specificities and potential influence of brain pathology. Functional magnetic resonance imaging (fMRI) allows non-invasive and quantitative assessment of language lateralization for presurgical planning using a laterality index (LI). However, the conventional method is limited by the dependence of the LI on the chosen activation threshold. To overcome this limitation, different threshold-independent LI calculations have been reported. The purpose of this study was to propose a simplified approach to threshold-independent LI calculation and compare it with three previously reported methods on the same cohort of subjects. Fifteen healthy subjects, who performed picture naming, verb generation, and word fluency tasks, were scanned. LI values were calculated for all subjects using four methods, and considering either the whole hemisphere or an atlas-defined language area. For each method, the subjects were ranked according to the calculated LI values, and the obtained rankings were compared. All LI calculation methods agreed in differentiating strong from weak lateralization on both hemispheric and regional scales (Spearman's correlation coefficients 0.59-1.00). In general, a more lateralized activation was found in the language area than in the whole hemisphere. The new method is well suited for application in the clinical practice as it is simple to implement, fast, and robust. The good agreement between LI calculation methods suggests that the choice of method is not key. Nevertheless, it should be consistent to allow a relative comparison of language lateralization between subjects.


High resolution and contrast 7 tesla MR brain imaging of the neonate.

  • Philippa Bridgen‎ et al.
  • Frontiers in radiology‎
  • 2023‎

Ultra-high field MR imaging offers marked gains in signal-to-noise ratio, spatial resolution, and contrast which translate to improved pathological and anatomical sensitivity. These benefits are particularly relevant for the neonatal brain which is rapidly developing and sensitive to injury. However, experience of imaging neonates at 7T has been limited due to regulatory, safety, and practical considerations. We aimed to establish a program for safely acquiring high resolution and contrast brain images from neonates on a 7T system.


Objective Bayesian fMRI analysis-a pilot study in different clinical environments.

  • Joerg Magerkurth‎ et al.
  • Frontiers in neuroscience‎
  • 2015‎

Functional MRI (fMRI) used for neurosurgical planning delineates functionally eloquent brain areas by time-series analysis of task-induced BOLD signal changes. Commonly used frequentist statistics protect against false positive results based on a p-value threshold. In surgical planning, false negative results are equally if not more harmful, potentially masking true brain activity leading to erroneous resection of eloquent regions. Bayesian statistics provides an alternative framework, categorizing areas as activated, deactivated, non-activated or with low statistical confidence. This approach has not yet found wide clinical application partly due to the lack of a method to objectively define an effect size threshold. We implemented a Bayesian analysis framework for neurosurgical planning fMRI. It entails an automated effect-size threshold selection method for posterior probability maps accounting for inter-individual BOLD response differences, which was calibrated based on the frequentist results maps thresholded by two clinical experts. We compared Bayesian and frequentist analysis of passive-motor fMRI data from 10 healthy volunteers measured on a pre-operative 3T and an intra-operative 1.5T MRI scanner. As a clinical case study, we tested passive motor task activation in a brain tumor patient at 3T under clinical conditions. With our novel effect size threshold method, the Bayesian analysis revealed regions of all four categories in the 3T data. Activated region foci and extent were consistent with the frequentist analysis results. In the lower signal-to-noise ratio 1.5T intra-operative scanner data, Bayesian analysis provided improved brain-activation detection sensitivity compared with the frequentist analysis, albeit the spatial extents of the activations were smaller than at 3T. Bayesian analysis of fMRI data using operator-independent effect size threshold selection may improve the sensitivity and certainty of information available to guide neurosurgery.


Memory in multiple sclerosis is linked to glutamate concentration in grey matter regions.

  • Nils Muhlert‎ et al.
  • Journal of neurology, neurosurgery, and psychiatry‎
  • 2014‎

Glutamate is the principal excitatory neurotransmitter and is involved in normal brain function. Cognitive impairment is common in multiple sclerosis (MS), and understanding its mechanisms is crucial for developing effective treatments. We used structural and metabolic brain imaging to test two hypotheses: (i) glutamate levels in grey matter regions are abnormal in MS, and (ii) patients show a relationship between glutamate concentration and memory performance.


NiftyFit: a Software Package for Multi-parametric Model-Fitting of 4D Magnetic Resonance Imaging Data.

  • Andrew Melbourne‎ et al.
  • Neuroinformatics‎
  • 2016‎

Multi-modal, multi-parametric Magnetic Resonance (MR) Imaging is becoming an increasingly sophisticated tool for neuroimaging. The relationships between parameters estimated from different individual MR modalities have the potential to transform our understanding of brain function, structure, development and disease. This article describes a new software package for such multi-contrast Magnetic Resonance Imaging that provides a unified model-fitting framework. We describe model-fitting functionality for Arterial Spin Labeled MRI, T1 Relaxometry, T2 relaxometry and Diffusion Weighted imaging, providing command line documentation to generate the figures in the manuscript. Software and data (using the nifti file format) used in this article are simultaneously provided for download. We also present some extended applications of the joint model fitting framework applied to diffusion weighted imaging and T2 relaxometry, in order to both improve parameter estimation in these models and generate new parameters that link different MR modalities. NiftyFit is intended as a clear and open-source educational release so that the user may adapt and develop their own functionality as they require.


Brain-derived neurotrophic factor in cerebrospinal fluid and plasma is not a biomarker for Huntington's disease.

  • Zhen-Yi Andy Ou‎ et al.
  • Scientific reports‎
  • 2021‎

Brain-derived neurotrophic factor (BDNF) is implicated in the survival of striatal neurons. BDNF function is reduced in Huntington's disease (HD), possibly because mutant huntingtin impairs its cortico-striatal transport, contributing to striatal neurodegeneration. The BDNF trophic pathway is a therapeutic target, and blood BDNF has been suggested as a potential biomarker for HD, but BDNF has not been quantified in cerebrospinal fluid (CSF) in HD. We quantified BDNF in CSF and plasma in the HD-CSF cohort (20 pre-manifest and 40 manifest HD mutation carriers and 20 age and gender-matched controls) using conventional ELISAs and an ultra-sensitive immunoassay. BDNF concentration was below the limit of detection of the conventional ELISAs, raising doubt about previous CSF reports in neurodegeneration. Using the ultra-sensitive method, BDNF concentration was quantifiable in all samples but did not differ between controls and HD mutation carriers in CSF or plasma, was not associated with clinical scores or MRI brain volumetric measures, and had poor ability to discriminate controls from HD mutation carriers, and premanifest from manifest HD. We conclude that BDNF in CSF and plasma is unlikely to be a biomarker of HD progression and urge caution in interpreting studies where conventional ELISA was used to quantify CSF BDNF.


Neurometabolite mapping highlights elevated myo-inositol profiles within the developing brain in down syndrome.

  • Prachi A Patkee‎ et al.
  • Neurobiology of disease‎
  • 2021‎

The neurodevelopmental phenotype in Down Syndrome (DS), or Trisomy 21, is variable including a wide spectrum of cognitive impairment and a high risk of early-onset Alzheimer's disease (AD). A key metabolite of interest within the brain in DS is Myo-inositol (mIns). The NA+/mIns co-transporter is located on human chromosome 21 and is overexpressed in DS. In adults with DS, elevated brain mIns was previously associated with cognitive impairment and proposed as a risk marker for progression to AD. However, it is unknown if brain mIns is increased earlier in development. The aim of this study was to estimate mIns concentration levels and key brain metabolites [N-acetylaspartate (NAA), Choline (Cho) and Creatine (Cr)] in the developing brain in DS and aged-matched controls. We used in vivo magnetic resonance spectroscopy (MRS) in neonates with DS (n = 12) and age-matched controls (n = 26) scanned just after birth (36-45 weeks postmenstrual age). Moreover, we used Mass Spectrometry in early (10-20 weeks post conception) ex vivo fetal brain tissue samples from DS (n = 14) and control (n = 30) cases. Relative to [Cho] and [Cr], we report elevated ratios of [mIns] in vivo in the basal ganglia/thalamus, in neonates with DS, when compared to age-matched typically developing controls. Glycine concentration ratios [Gly]/[Cr] and [Cho]/[Cr] also appear elevated. We observed elevated [mIns] in the ex vivo fetal cortical brain tissue in DS compared with controls. In conclusion, a higher level of brain mIns was evident as early as 10 weeks post conception and was measurable in vivo from 36 weeks post-menstrual age. Future work will determine if this early difference in metabolites is linked to cognitive outcomes in childhood or has utility as a potential treatment biomarker for early intervention.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: