Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Restraint stress-induced brain activation patterns in two strains of mice differing in their anxiety behaviour.

  • Cliona M O'Mahony‎ et al.
  • Behavioural brain research‎
  • 2010‎

Genetically identical inbred mouse strains are one of the most useful tools in dissecting the genetic basis of complex disorders. C57BL/6 and BALB/c mice differ markedly in emotionality. In particular, BALB/c mice are more stress-sensitive and have been proposed to be a model of pathological anxiety. There is a paucity of studies investigating whether brain activation in response to a stressor is different in these two strains. To this end, having confirmed that the strains differ in anxiety responses in a light-dark box test, we then examined if restraint stress induced increases in c-Fos protein expression in selective regions of the mouse brain. The areas of interest analysed were the paraventricular nucleus (PVN) of the hypothalamus, prefrontal cortex (PFC), the paraventricular thalamic nucleus (PV) and the hippocampus. These areas were chosen due to their known involvement in stress response. Our data demonstrate that BALB/c showed a similar cellular activation pattern to stress, with respect to c-Fos expression, in the PVN, PV and in the hippocampus. On the other hand, BALB/c showed markedly blunted stress-induced brain activation compared with stressed C57BL/6 mice in both the CG1 and CG2 regions of the PFC. The lower levels of stress-induced activity in high anxiety BALB/c mice, possibly indicate a circuit dysregulation at the cortico-limbic level in response to stress.


Base-specific mutational intolerance near splice sites clarifies the role of nonessential splice nucleotides.

  • Sidi Zhang‎ et al.
  • Genome research‎
  • 2018‎

Variation in RNA splicing (i.e., alternative splicing) plays an important role in many diseases. Variants near 5' and 3' splice sites often affect splicing, but the effects of these variants on splicing and disease have not been fully characterized beyond the two "essential" splice nucleotides flanking each exon. Here we provide quantitative measurements of tolerance to mutational disruptions by position and reference allele-alternative allele combinations. We show that certain reference alleles are particularly sensitive to mutations, regardless of the alternative alleles into which they are mutated. Using public RNA-seq data, we demonstrate that individuals carrying such variants have significantly lower levels of the correctly spliced transcript, compared to individuals without them, and confirm that these specific substitutions are highly enriched for known Mendelian mutations. Our results propose a more refined definition of the "splice region" and offer a new way to prioritize and provide functional interpretation of variants identified in diagnostic sequencing and association studies.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: